Xin Tong, Yang Zou, Zhiwei Wen, Zesheng Liu, Tiancheng Luo, Jie Zhou, Huajun Liu, Yuqi Ren, Qinwen Xu, Wenjuan Liu, Yan Liu, Yao Cai, Chengliang Sun
{"title":"6 GHz lamb wave acoustic filters based on A1-mode lithium niobate thin film resonators with checker-shaped electrodes","authors":"Xin Tong, Yang Zou, Zhiwei Wen, Zesheng Liu, Tiancheng Luo, Jie Zhou, Huajun Liu, Yuqi Ren, Qinwen Xu, Wenjuan Liu, Yan Liu, Yao Cai, Chengliang Sun","doi":"10.1038/s41378-024-00776-4","DOIUrl":null,"url":null,"abstract":"<p>The first-order antisymmetric (A1) mode lamb wave resonator (LWR) based on Z-cut LiNbO<sub>3</sub> thin films has attracted significant attention and is widely believed to be a candidate for next-generation reconfigurable filters with high frequency and large bandwidth (<i>BW</i>). However, it is challenging for traditional interdigitated electrodes (IDTs) based LWR filters to meet the requirement of a clean frequency spectrum response and enough out-of-band (<i>OoB</i>) rejection. To solve the problem, we propose LWRs with checker-shaped IDTs for the design of filters that meet the Wi-Fi 6E standard. By taking advantage of checker-shaped IDTs with unparalleled boundaries, the fabricated 6-GHz resonators successfully suppress higher-order A1 spurious modes, demonstrating a spurious-free impedance response and a high figure-of-merit (<i>FOM</i>) up to 104. Based on the demonstrated checker-shaped electrode design, the filter features a center frequency (<i>f</i><sub><i>0</i></sub>) of more than 6 GHz, a 3 dB <i>BW</i> exceeding 620 MHz, and an excellent <i>OoB</i> rejection >25 dB, consistent with the acoustic-electric-electromagnetic (EM) multi-physics simulations. Furthermore, through the capacitance-inductance matching network technology, the filter’s voltage standing wave ratio (VSWR) is successfully reduced below 2, showing an excellent 50 Ω impedance matching. This study lays a foundation for ultra-high-frequency and ultra-wideband filters for the Wi-Fi 6/6E application.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"1 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00776-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The first-order antisymmetric (A1) mode lamb wave resonator (LWR) based on Z-cut LiNbO3 thin films has attracted significant attention and is widely believed to be a candidate for next-generation reconfigurable filters with high frequency and large bandwidth (BW). However, it is challenging for traditional interdigitated electrodes (IDTs) based LWR filters to meet the requirement of a clean frequency spectrum response and enough out-of-band (OoB) rejection. To solve the problem, we propose LWRs with checker-shaped IDTs for the design of filters that meet the Wi-Fi 6E standard. By taking advantage of checker-shaped IDTs with unparalleled boundaries, the fabricated 6-GHz resonators successfully suppress higher-order A1 spurious modes, demonstrating a spurious-free impedance response and a high figure-of-merit (FOM) up to 104. Based on the demonstrated checker-shaped electrode design, the filter features a center frequency (f0) of more than 6 GHz, a 3 dB BW exceeding 620 MHz, and an excellent OoB rejection >25 dB, consistent with the acoustic-electric-electromagnetic (EM) multi-physics simulations. Furthermore, through the capacitance-inductance matching network technology, the filter’s voltage standing wave ratio (VSWR) is successfully reduced below 2, showing an excellent 50 Ω impedance matching. This study lays a foundation for ultra-high-frequency and ultra-wideband filters for the Wi-Fi 6/6E application.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.