Hanane Chajra, Thibaut Saguet, Corinne Granger, Lionel Breton, Pedro Contreiras Pinto, Mickael Machicoane, Jean Marc Le Doussal
{"title":"A New TGF-β Mimetic, XEP™-716 Miniprotein™, Exhibiting Regenerative Properties Objectivized by Instrumental Evaluation","authors":"Hanane Chajra, Thibaut Saguet, Corinne Granger, Lionel Breton, Pedro Contreiras Pinto, Mickael Machicoane, Jean Marc Le Doussal","doi":"10.1007/s13555-024-01273-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Skin aging, which results from intrinsic and extrinsic factors, is characterized by a rough, uneven and wrinkled appearance of the skin at the macroscopic level. At the microscopic level, aging shows lowered keratinocyte turnover, flattened dermal-epidermal junction and reduced collagen fiber density; however, use of skin biopsies to evaluate characteristic properties of these microscopic changes is too limiting for panelists and rarely used. The development of non-invasive techniques is an opportunity to be considered for such evaluations. Our objective was to demonstrate the rejuvenating effects of XEP™-716 Miniprotein™ on skin, a miniprotein having TGF-β beta-like properties, in vitro on normal human fibroblasts and at the clinical level.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In vitro, the skin rejuvenation properties of XEP™-716 Miniprotein™ were studied by quantification of well-known dermal components such as collagen type I, hyaluronic acid and elastin. At the clinical level, we used a non-invasive technique, the confocal laser scanning microscopy (CLSM) system, which enabled non-invasive morphological characterization of skin structures (stratum corneum thickness, viable epidermis, full epidermis, dermal-epidermal junction, papillae, dermal collagen density) and high-frequency ultrasonography to quantify the dermal density and thickness, which are useful parameters for quantifying rejuvenating effects on skin. Lastly, a cutometer was used to assess the skin's biomechanical properties, mainly firmness and elasticity. This monocentric double-blind, split-face, randomized, placebo-controlled clinical trial compared the active ingredient XEP™-716 Miniprotein™ in a vehicle on one hemiface versus vehicle alone on the other (placebo) and enrolled panelists aged 40 to 60 years old. All measurements were carried out on the malar area before and after 28 and 56 days of twice daily application of a cosmetic cream formulation containing either 2.5% or 5% XEP™-716 Miniprotein™. The skin rejuvenating properties were demonstrated by studying dermo-epidermal junction (DEJ) flattening reduction using the measure of two parameters by CLSM: the DEJ length and number of edged papillae. Dermis rejuvenation was assessed by measuring the collagen fiber perimeters (CLSM), dermal density and dermal thickness (ultrasonography).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The in vitro results confirmed the ability of XEP™-716 Miniprotein™ to stimulate the key extracellular macromolecules, namely collagen type I, hyaluronic acid and elastin, at a level comparable to that induced by TGF beta growth factor. The clinical data showed that after 28 and 56 days of topical XEP™-716 Miniprotein™ application, there was a statistically significant increase of DEJ length, number of edged papillae and collagen fiber perimeters. At the same time point, the B-scan images of facial skin showed a statistically significant increase of dermal density and thickness. These results reveal that the DEJ became more undulated and tightly attached to the dermis, while the papillary dermis was densified, both traits being typical characteristic of younger skin. Rejuvenation was also confirmed by an improvement of skin firmness and elasticity.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The in vitro and clinical results presented in this article show that XEP™-716 Miniprotein™ is a potent ingredient to rejuvenate the DEJ and dermis of mature skin.</p>","PeriodicalId":11186,"journal":{"name":"Dermatology and Therapy","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dermatology and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13555-024-01273-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Skin aging, which results from intrinsic and extrinsic factors, is characterized by a rough, uneven and wrinkled appearance of the skin at the macroscopic level. At the microscopic level, aging shows lowered keratinocyte turnover, flattened dermal-epidermal junction and reduced collagen fiber density; however, use of skin biopsies to evaluate characteristic properties of these microscopic changes is too limiting for panelists and rarely used. The development of non-invasive techniques is an opportunity to be considered for such evaluations. Our objective was to demonstrate the rejuvenating effects of XEP™-716 Miniprotein™ on skin, a miniprotein having TGF-β beta-like properties, in vitro on normal human fibroblasts and at the clinical level.
Methods
In vitro, the skin rejuvenation properties of XEP™-716 Miniprotein™ were studied by quantification of well-known dermal components such as collagen type I, hyaluronic acid and elastin. At the clinical level, we used a non-invasive technique, the confocal laser scanning microscopy (CLSM) system, which enabled non-invasive morphological characterization of skin structures (stratum corneum thickness, viable epidermis, full epidermis, dermal-epidermal junction, papillae, dermal collagen density) and high-frequency ultrasonography to quantify the dermal density and thickness, which are useful parameters for quantifying rejuvenating effects on skin. Lastly, a cutometer was used to assess the skin's biomechanical properties, mainly firmness and elasticity. This monocentric double-blind, split-face, randomized, placebo-controlled clinical trial compared the active ingredient XEP™-716 Miniprotein™ in a vehicle on one hemiface versus vehicle alone on the other (placebo) and enrolled panelists aged 40 to 60 years old. All measurements were carried out on the malar area before and after 28 and 56 days of twice daily application of a cosmetic cream formulation containing either 2.5% or 5% XEP™-716 Miniprotein™. The skin rejuvenating properties were demonstrated by studying dermo-epidermal junction (DEJ) flattening reduction using the measure of two parameters by CLSM: the DEJ length and number of edged papillae. Dermis rejuvenation was assessed by measuring the collagen fiber perimeters (CLSM), dermal density and dermal thickness (ultrasonography).
Results
The in vitro results confirmed the ability of XEP™-716 Miniprotein™ to stimulate the key extracellular macromolecules, namely collagen type I, hyaluronic acid and elastin, at a level comparable to that induced by TGF beta growth factor. The clinical data showed that after 28 and 56 days of topical XEP™-716 Miniprotein™ application, there was a statistically significant increase of DEJ length, number of edged papillae and collagen fiber perimeters. At the same time point, the B-scan images of facial skin showed a statistically significant increase of dermal density and thickness. These results reveal that the DEJ became more undulated and tightly attached to the dermis, while the papillary dermis was densified, both traits being typical characteristic of younger skin. Rejuvenation was also confirmed by an improvement of skin firmness and elasticity.
Conclusion
The in vitro and clinical results presented in this article show that XEP™-716 Miniprotein™ is a potent ingredient to rejuvenate the DEJ and dermis of mature skin.
期刊介绍:
Dermatology and Therapy is an international, open access, peer-reviewed, rapid publication journal (peer review in 2 weeks, published 3–4 weeks from acceptance). The journal is dedicated to the publication of high-quality clinical (all phases), observational, real-world, and health outcomes research around the discovery, development, and use of dermatological therapies. Studies relating to diagnosis, pharmacoeconomics, public health and epidemiology, quality of life, and patient care, management, and education are also encouraged.
Areas of focus include, but are not limited to all clinical aspects of dermatology, such as skin pharmacology; skin development and aging; prevention, diagnosis, and management of skin disorders and melanomas; research into dermal structures and pathology; and all areas of aesthetic dermatology, including skin maintenance, dermatological surgery, and lasers.
The journal is of interest to a broad audience of pharmaceutical and healthcare professionals and publishes original research, reviews, case reports/case series, trial protocols, and short communications. Dermatology and Therapy will consider all scientifically sound research be it positive, confirmatory or negative data. Submissions are welcomed whether they relate to an International and/or a country-specific audience, something that is crucially important when researchers are trying to target more specific patient populations. This inclusive approach allows the journal to assist in the dissemination of quality research, which may be considered of insufficient interest by other journals. The journal appeals to a global audience and receives submissions from all over the world.