{"title":"Non‐causal and non‐invertible ARMA models: Identification, estimation and application in equity portfolios","authors":"Alain Hecq, Daniel Velasquez‐Gaviria","doi":"10.1111/jtsa.12776","DOIUrl":null,"url":null,"abstract":"The mixed causal‐non‐causal invertible‐non‐invertible autoregressive moving‐average (MARMA) models have the advantage of incorporating roots inside the unit circle, thus adjusting the dynamics of financial returns that depend on future expectations. This article introduces new techniques for estimating, identifying and simulating MARMA models. Although the estimation of the parameters is done using second‐order moments, the identification relies on the existence of high‐order dynamics, captured in the high‐order spectral densities and the correlation of the squared residuals. A comprehensive Monte Carlo study demonstrated the robust performance of our estimation and identification methods. We propose an empirical application to 24 portfolios from emerging markets based on the factors: size, book‐to‐market, profitability, investment and momentum. All portfolios exhibited forward‐looking behavior, showing significant non‐causal and non‐invertible dynamics. Moreover, we found the residuals to be uncorrelated and independent, with no trace of conditional volatility.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12776","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The mixed causal‐non‐causal invertible‐non‐invertible autoregressive moving‐average (MARMA) models have the advantage of incorporating roots inside the unit circle, thus adjusting the dynamics of financial returns that depend on future expectations. This article introduces new techniques for estimating, identifying and simulating MARMA models. Although the estimation of the parameters is done using second‐order moments, the identification relies on the existence of high‐order dynamics, captured in the high‐order spectral densities and the correlation of the squared residuals. A comprehensive Monte Carlo study demonstrated the robust performance of our estimation and identification methods. We propose an empirical application to 24 portfolios from emerging markets based on the factors: size, book‐to‐market, profitability, investment and momentum. All portfolios exhibited forward‐looking behavior, showing significant non‐causal and non‐invertible dynamics. Moreover, we found the residuals to be uncorrelated and independent, with no trace of conditional volatility.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.