Yanyi Chen, Ziyang Ye, Tao Wang, Baiyuan Tang, Chengpeng Wan, Hao Zhang, Yunpeng Li
{"title":"Research on Response Strategies for Inland Waterway Vessel Traffic Risk Based on Cost-Effect Trade-Offs","authors":"Yanyi Chen, Ziyang Ye, Tao Wang, Baiyuan Tang, Chengpeng Wan, Hao Zhang, Yunpeng Li","doi":"10.3390/jmse12091659","DOIUrl":null,"url":null,"abstract":"Compared to maritime vessel traffic accidents, there is a scarcity of available, and only incomplete, accident data for inland waterway accidents. Additionally, the characteristics of different waterway segments vary significantly, and the factors affecting navigation safety risks and their mechanisms may also differ. Meanwhile, in recent years, extreme weather events have been frequent in inland waterways, and there has been a clear trend towards larger vessels, bringing about new safety hazards and management challenges. Currently, research on inland waterway navigation safety risks mainly focuses on risk assessment, with scarce quantitative studies on risk mitigation measures. This paper proposes a new method for improving inland waterway traffic safety, based on a cost-effectiveness trade-off approach to mitigate the risk of vessel traffic accidents. The method links the effectiveness and cost of measures and constructs a comprehensive cost-benefit evaluation model using fuzzy Bayesian and quantification conversion techniques, considering the reduction effects of risk mitigation measures under uncertain conditions and the various costs they may incur. Taking the upper, middle, and lower reaches of the Yangtze River as examples, this research evaluates key risk mitigation measures for different waterway segments and provides the most cost-effective strategies. Findings reveal that, even if different waterways share the same key risk sources, the most cost-effective measures vary due to environmental differences. Moreover, there is no inherent correlation between the best-performing measures in terms of benefits and the lowest-cost measures, nor are they necessarily recommended. The proposed method and case studies provide theoretical support for scientifically formulating risk mitigation measures in complex environments and offer guidance for inland waterway management departments to determine future key work directions.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"95 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091659","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Compared to maritime vessel traffic accidents, there is a scarcity of available, and only incomplete, accident data for inland waterway accidents. Additionally, the characteristics of different waterway segments vary significantly, and the factors affecting navigation safety risks and their mechanisms may also differ. Meanwhile, in recent years, extreme weather events have been frequent in inland waterways, and there has been a clear trend towards larger vessels, bringing about new safety hazards and management challenges. Currently, research on inland waterway navigation safety risks mainly focuses on risk assessment, with scarce quantitative studies on risk mitigation measures. This paper proposes a new method for improving inland waterway traffic safety, based on a cost-effectiveness trade-off approach to mitigate the risk of vessel traffic accidents. The method links the effectiveness and cost of measures and constructs a comprehensive cost-benefit evaluation model using fuzzy Bayesian and quantification conversion techniques, considering the reduction effects of risk mitigation measures under uncertain conditions and the various costs they may incur. Taking the upper, middle, and lower reaches of the Yangtze River as examples, this research evaluates key risk mitigation measures for different waterway segments and provides the most cost-effective strategies. Findings reveal that, even if different waterways share the same key risk sources, the most cost-effective measures vary due to environmental differences. Moreover, there is no inherent correlation between the best-performing measures in terms of benefits and the lowest-cost measures, nor are they necessarily recommended. The proposed method and case studies provide theoretical support for scientifically formulating risk mitigation measures in complex environments and offer guidance for inland waterway management departments to determine future key work directions.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.