Zaiwu Yang, Miao Deng, Lin Ren, Zhaona Fan, Shiwen Yang, Suyang Liu, Xianyue Ren, Jinlong Gao, Bin Cheng, Juan Xia
{"title":"Pyroptosis of oral keratinocyte contributes to energy metabolic reprogramming of T cells in oral lichen planus via OPA1-mediated mitochondrial fusion","authors":"Zaiwu Yang, Miao Deng, Lin Ren, Zhaona Fan, Shiwen Yang, Suyang Liu, Xianyue Ren, Jinlong Gao, Bin Cheng, Juan Xia","doi":"10.1038/s41420-024-02174-1","DOIUrl":null,"url":null,"abstract":"<p>Oral lichen planus (OLP) is a chronic inflammatory disease that is associated with an increased risk of carcinogenesis. The typical pathological features of OLP include submucosal T-cell banding, infiltration, and liquefactive degeneration of basal epithelial cells. However, the histological appearance of basal cell death cannot be explained by apoptosis of keratinocytes alone. The aim of this study was to explore a novel mechanism of epithelial cell death, pyroptosis, and its role in the development of OLP. The immunohistochemical results initially revealed pyroptosis in the epithelial cells of OLP. There was significant upregulation of pyroptosis-related inflammatory cytokines, specifically IL-1β. The expression of IL-1β is closely related to the severity of the patient’s condition. In vitro, the culture supernatant from epithelial cells and exogenous IL-1β significantly promote the proliferation and activation of T cells. This effect can be inhibited by neutralizing antibody or receptor inhibitor of IL-1β. Stimulation with exogenous IL-1β enhances both glycolysis and oxidative phosphorylation in T cells, with a more pronounced increase in glycolysis. This is due to the regulation of NAD<sup>+</sup> availability and mitochondrial dynamics by IL-1β. IL-1β specifically stimulates the expression of optic atrophy 1 (OPA1), particularly L-OPA1, which promotes mitochondrial fusion and increases NAD<sup>+</sup> availability. This process upregulated glycolysis in T cells. The knockdown of OPA1 reverses these changes by reducing the proliferation and activation of T cells. In this study, IL-1β promoted OPA1 transcription by activating the NF-κB pathway. The expression of OPA1 is inhibited by the inhibitor of NF-κB pathway. These results suggest that OLP keratinocytes undergo pyroptosis, which then secrete inflammatory factors that activate the NF-κB signaling pathway of T cells. This pathway regulates OPA1-mediated mitochondrial fusion and energy metabolism reprogramming in T cells, contributing to the development of OLP. These findings provide new insights into the mechanisms and therapeutic strategies for OLP.</p><figure></figure>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"2 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02174-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral lichen planus (OLP) is a chronic inflammatory disease that is associated with an increased risk of carcinogenesis. The typical pathological features of OLP include submucosal T-cell banding, infiltration, and liquefactive degeneration of basal epithelial cells. However, the histological appearance of basal cell death cannot be explained by apoptosis of keratinocytes alone. The aim of this study was to explore a novel mechanism of epithelial cell death, pyroptosis, and its role in the development of OLP. The immunohistochemical results initially revealed pyroptosis in the epithelial cells of OLP. There was significant upregulation of pyroptosis-related inflammatory cytokines, specifically IL-1β. The expression of IL-1β is closely related to the severity of the patient’s condition. In vitro, the culture supernatant from epithelial cells and exogenous IL-1β significantly promote the proliferation and activation of T cells. This effect can be inhibited by neutralizing antibody or receptor inhibitor of IL-1β. Stimulation with exogenous IL-1β enhances both glycolysis and oxidative phosphorylation in T cells, with a more pronounced increase in glycolysis. This is due to the regulation of NAD+ availability and mitochondrial dynamics by IL-1β. IL-1β specifically stimulates the expression of optic atrophy 1 (OPA1), particularly L-OPA1, which promotes mitochondrial fusion and increases NAD+ availability. This process upregulated glycolysis in T cells. The knockdown of OPA1 reverses these changes by reducing the proliferation and activation of T cells. In this study, IL-1β promoted OPA1 transcription by activating the NF-κB pathway. The expression of OPA1 is inhibited by the inhibitor of NF-κB pathway. These results suggest that OLP keratinocytes undergo pyroptosis, which then secrete inflammatory factors that activate the NF-κB signaling pathway of T cells. This pathway regulates OPA1-mediated mitochondrial fusion and energy metabolism reprogramming in T cells, contributing to the development of OLP. These findings provide new insights into the mechanisms and therapeutic strategies for OLP.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.