首页 > 最新文献

Cell Death Discovery最新文献

英文 中文
Insights on the crosstalk among different cell death mechanisms.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1038/s41420-025-02328-9
Georgette Eskander, Sherihan G Abdelhamid, Sara A Wahdan, Sara M Radwan

The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.

{"title":"Insights on the crosstalk among different cell death mechanisms.","authors":"Georgette Eskander, Sherihan G Abdelhamid, Sara A Wahdan, Sara M Radwan","doi":"10.1038/s41420-025-02328-9","DOIUrl":"https://doi.org/10.1038/s41420-025-02328-9","url":null,"abstract":"<p><p>The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"56"},"PeriodicalIF":6.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tri-specific tribodies targeting 5T4, CD3, and immune checkpoint drive stronger functional T-cell responses than combinations of antibody therapeutics.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1038/s41420-025-02329-8
Margherita Passariello, Lorenzo Manna, Rosa Rapuano Lembo, Asami Yoshioka, Toshikazu Inoue, Kentaro Kajiwara, Shu-Ichi Hashimoto, Koji Nakamura, Claudia De Lorenzo

One of the most promising cancer immunotherapies is based on bi-specific T-cell engagers (BiTEs) that simultaneously bind with one arm to a tumor-associated antigen on tumor cells and with the other one to CD3 complex on T cells to form a TCR-MHC independent immune synapse. We previously generated four novel tri-specific tribodies made up of a Fab targeting 5T4, an oncofetal tumor antigen expressed on several types of tumors, a scFv targeting CD3 on T cells, and an additional scFv specific for an immune checkpoint (IC), such as PD-1, PD-L1 or LAG-3. To verify their advantages over the combinations of BiTEs (CD3/TAA) with IC inhibitors, recently used to overcome tumor immunosuppressive environment, here we tested their functional properties in comparison with clinically validated mAbs targeting the same ICs, used alone or in combination with a control bi-specific devoid of immunomodulatory scFvs, called 53 P. We found that the novel tri-specific tribodies activated human peripheral blood mononuclear cells more efficiently than clinically validated mAbs (atezolizumab, pembrolizumab, and relatlimab) either used alone or in combination with 53 P, leading to a stronger tumor cytotoxicity and cytokines release. In particular, 53L10 tribody targeting PD-L1 displayed much more potent effects than the combination of 53 P with all the clinically validated mAbs and led to complete tumor regression in vivo, showing much higher efficacy than the combination of 53 P and atezolizumab. We shed light on the molecular basis of this potentiated anti-tumor activity by evidencing that the insertion of the anti-PD-L1 moiety in 53L10 led not only to stronger binding of the tri-specific to tumor cells but also efficiently blocked the effects of increased PD-L1 on tumor cells, induced by IFNγ secretion also due to T-cell activation. These results are important also for the design of novel T-cell engagers targeting other tumor antigens.

{"title":"Tri-specific tribodies targeting 5T4, CD3, and immune checkpoint drive stronger functional T-cell responses than combinations of antibody therapeutics.","authors":"Margherita Passariello, Lorenzo Manna, Rosa Rapuano Lembo, Asami Yoshioka, Toshikazu Inoue, Kentaro Kajiwara, Shu-Ichi Hashimoto, Koji Nakamura, Claudia De Lorenzo","doi":"10.1038/s41420-025-02329-8","DOIUrl":"https://doi.org/10.1038/s41420-025-02329-8","url":null,"abstract":"<p><p>One of the most promising cancer immunotherapies is based on bi-specific T-cell engagers (BiTEs) that simultaneously bind with one arm to a tumor-associated antigen on tumor cells and with the other one to CD3 complex on T cells to form a TCR-MHC independent immune synapse. We previously generated four novel tri-specific tribodies made up of a Fab targeting 5T4, an oncofetal tumor antigen expressed on several types of tumors, a scFv targeting CD3 on T cells, and an additional scFv specific for an immune checkpoint (IC), such as PD-1, PD-L1 or LAG-3. To verify their advantages over the combinations of BiTEs (CD3/TAA) with IC inhibitors, recently used to overcome tumor immunosuppressive environment, here we tested their functional properties in comparison with clinically validated mAbs targeting the same ICs, used alone or in combination with a control bi-specific devoid of immunomodulatory scFvs, called 53 P. We found that the novel tri-specific tribodies activated human peripheral blood mononuclear cells more efficiently than clinically validated mAbs (atezolizumab, pembrolizumab, and relatlimab) either used alone or in combination with 53 P, leading to a stronger tumor cytotoxicity and cytokines release. In particular, 53L10 tribody targeting PD-L1 displayed much more potent effects than the combination of 53 P with all the clinically validated mAbs and led to complete tumor regression in vivo, showing much higher efficacy than the combination of 53 P and atezolizumab. We shed light on the molecular basis of this potentiated anti-tumor activity by evidencing that the insertion of the anti-PD-L1 moiety in 53L10 led not only to stronger binding of the tri-specific to tumor cells but also efficiently blocked the effects of increased PD-L1 on tumor cells, induced by IFNγ secretion also due to T-cell activation. These results are important also for the design of novel T-cell engagers targeting other tumor antigens.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"58"},"PeriodicalIF":6.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: CK2α-mediated phosphorylation of GRP94 facilitates the metastatic cascade in triple-negative breast cancer.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1038/s41420-025-02298-y
Hye-Youn Kim, Young-Mi Kim, Suntaek Hong
{"title":"Correction: CK2α-mediated phosphorylation of GRP94 facilitates the metastatic cascade in triple-negative breast cancer.","authors":"Hye-Youn Kim, Young-Mi Kim, Suntaek Hong","doi":"10.1038/s41420-025-02298-y","DOIUrl":"https://doi.org/10.1038/s41420-025-02298-y","url":null,"abstract":"","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"57"},"PeriodicalIF":6.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-08 DOI: 10.1038/s41420-025-02334-x
Ying Xu, Weiwei Meng, Yingqi Dai, Lin Xu, Ning Ding, Jinqing Zhang, Xuewei Zhuang

Histone lactylation plays a crucial role in cancer progression, but its impact on breast cancer (BC) tumorigenesis is still unclear. We utilized chromatin immunoprecipitation sequencing with H3K18la antibodies, transcriptomics of clinical BC samples, and proteomics and ATAC-seq analyses of in vivo tumors to identify the genes regulated by H3K18la and the transcription factor PPARD. qPCR and Western blot assays were used to detect expressions of molecules. We discovered that H3K18la levels were higher in BC tissues compared to adjacent non-cancerous tissues. H3K18la promoted the expression of PPARD, which in turn influenced the transcription of AKT, but not ILK. ATAC-seq analysis revealed that glycolysis in BC cells enhanced chromatin accessibility. Additionally, we confirmed that HDAC2 and HDAC3 act as "erasers" for H3 lysine lactylation. During the proteomics analysis, AKT-phosphorylation in the aerobic respiration inhibitor group exhibited an apparent disparity and activity. Our study demonstrated that changes in H3K18la in BC and its downstream transcription factor PPARD support cell survival under anaerobic glycolysis conditions. PPARD accelerated cancer proliferation by promoting the transcription and phosphorylation of AKT. This highlights the therapeutic potential of targeting the H3K18la/PPARD/AKT axis in breast cancer, providing new insights into epigenetic regulation and cancer metabolism (Trial registration: The study was approved by the Research Ethics Committee Shandong Provincial Third Hospital (KYLL-2023057; https://www.medicalresearch.org.cn/ )).

{"title":"Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis.","authors":"Ying Xu, Weiwei Meng, Yingqi Dai, Lin Xu, Ning Ding, Jinqing Zhang, Xuewei Zhuang","doi":"10.1038/s41420-025-02334-x","DOIUrl":"10.1038/s41420-025-02334-x","url":null,"abstract":"<p><p>Histone lactylation plays a crucial role in cancer progression, but its impact on breast cancer (BC) tumorigenesis is still unclear. We utilized chromatin immunoprecipitation sequencing with H3K18la antibodies, transcriptomics of clinical BC samples, and proteomics and ATAC-seq analyses of in vivo tumors to identify the genes regulated by H3K18la and the transcription factor PPARD. qPCR and Western blot assays were used to detect expressions of molecules. We discovered that H3K18la levels were higher in BC tissues compared to adjacent non-cancerous tissues. H3K18la promoted the expression of PPARD, which in turn influenced the transcription of AKT, but not ILK. ATAC-seq analysis revealed that glycolysis in BC cells enhanced chromatin accessibility. Additionally, we confirmed that HDAC2 and HDAC3 act as \"erasers\" for H3 lysine lactylation. During the proteomics analysis, AKT-phosphorylation in the aerobic respiration inhibitor group exhibited an apparent disparity and activity. Our study demonstrated that changes in H3K18la in BC and its downstream transcription factor PPARD support cell survival under anaerobic glycolysis conditions. PPARD accelerated cancer proliferation by promoting the transcription and phosphorylation of AKT. This highlights the therapeutic potential of targeting the H3K18la/PPARD/AKT axis in breast cancer, providing new insights into epigenetic regulation and cancer metabolism (Trial registration: The study was approved by the Research Ethics Committee Shandong Provincial Third Hospital (KYLL-2023057; https://www.medicalresearch.org.cn/ )).</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"54"},"PeriodicalIF":6.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of lanosterol synthase linking with MAPK/JNK signaling pathway suppresses endometrial cancer.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-08 DOI: 10.1038/s41420-025-02325-y
Liangjian Ma, Wunan Huang, Xiaolei Liang, Hongli Li, Wei Yu, Lexin Liu, Yuelin Guan, Chang Liu, Xiangjun Chen, Lidan Hu

Endometrial cancer (EC) is a significant health threat to women, with recurrence after treatment posing a major challenge. While abnormal cholesterol metabolism has been implicated in EC progression, the underlying mechanisms remain unclear. In this study, we identified lanosterol synthase (LSS) as a key mediator in cholesterol metabolism associated with EC. We found that LSS is significantly upregulated in EC tissues. Functional assays revealed that LSS promotes cell proliferation and migration, inhibits apoptosis, and drives tumor growth in vivo. Mechanistically, LSS exerts dual effects by accumulating cholesterol esters, thereby enhancing EC cell growth, and activating the MAPK/JNK signaling pathway. Importantly, inhibition of LSS with the specific inhibitor Ro 48-8071 not only reduced EC cell proliferation and suppressed xenograft tumor growth but also inhibited the growth of patient-derived tumor-like cell clusters (PTCs). These findings establish LSS as a novel oncogene in EC, promoting tumor progression through MAPK/JNK signaling activation and cholesterol ester accumulation, and highlight the therapeutic potential of targeting LSS in EC treatment.

{"title":"Inhibition of lanosterol synthase linking with MAPK/JNK signaling pathway suppresses endometrial cancer.","authors":"Liangjian Ma, Wunan Huang, Xiaolei Liang, Hongli Li, Wei Yu, Lexin Liu, Yuelin Guan, Chang Liu, Xiangjun Chen, Lidan Hu","doi":"10.1038/s41420-025-02325-y","DOIUrl":"10.1038/s41420-025-02325-y","url":null,"abstract":"<p><p>Endometrial cancer (EC) is a significant health threat to women, with recurrence after treatment posing a major challenge. While abnormal cholesterol metabolism has been implicated in EC progression, the underlying mechanisms remain unclear. In this study, we identified lanosterol synthase (LSS) as a key mediator in cholesterol metabolism associated with EC. We found that LSS is significantly upregulated in EC tissues. Functional assays revealed that LSS promotes cell proliferation and migration, inhibits apoptosis, and drives tumor growth in vivo. Mechanistically, LSS exerts dual effects by accumulating cholesterol esters, thereby enhancing EC cell growth, and activating the MAPK/JNK signaling pathway. Importantly, inhibition of LSS with the specific inhibitor Ro 48-8071 not only reduced EC cell proliferation and suppressed xenograft tumor growth but also inhibited the growth of patient-derived tumor-like cell clusters (PTCs). These findings establish LSS as a novel oncogene in EC, promoting tumor progression through MAPK/JNK signaling activation and cholesterol ester accumulation, and highlight the therapeutic potential of targeting LSS in EC treatment.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"55"},"PeriodicalIF":6.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting MDM2 affects spastin protein levels and functions: implications for HSP treatment.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1038/s41420-025-02333-y
Francesca Sardina, Federica Polverino, Sonia Valentini, Claudia Carsetti, Elisabetta Falvo, Giada Tisci, Silvia Soddu, Fabiola Moretti, Alessandro Paiardini, Cinzia Rinaldo

Spastin is a microtubule (MT) severing enzyme that regulates several cell functions associated with MT dynamics. A reduction in spastin protein levels is responsible for approximately 40% of cases of Hereditary Spastic Paraplegia (HSP), a neurodegenerative disease. Currently, there is no cure for HSP but strategies to induce a recovery of spastin levels are emerging as potential therapeutic approaches. Here, we show that MDM2 interacts with spastin MT-interacting and trafficking (MIT) domain. By biochemical and functional experiments, we demonstrate that MDM2 binds spastin and regulates its levels in a post-transcriptional manner independently of the E3 ubiquitin ligase activity. Of relevance, treatment of spastin-deficient cells with the MDM2 inhibitor Nutlin-3a can restore spastin levels and functions, such as cytokinetic abscission and sorting of transferrin receptor. These findings identify MDM2 as a novel interactor of spastin and a potential druggable regulator of its protein levels.

{"title":"Targeting MDM2 affects spastin protein levels and functions: implications for HSP treatment.","authors":"Francesca Sardina, Federica Polverino, Sonia Valentini, Claudia Carsetti, Elisabetta Falvo, Giada Tisci, Silvia Soddu, Fabiola Moretti, Alessandro Paiardini, Cinzia Rinaldo","doi":"10.1038/s41420-025-02333-y","DOIUrl":"10.1038/s41420-025-02333-y","url":null,"abstract":"<p><p>Spastin is a microtubule (MT) severing enzyme that regulates several cell functions associated with MT dynamics. A reduction in spastin protein levels is responsible for approximately 40% of cases of Hereditary Spastic Paraplegia (HSP), a neurodegenerative disease. Currently, there is no cure for HSP but strategies to induce a recovery of spastin levels are emerging as potential therapeutic approaches. Here, we show that MDM2 interacts with spastin MT-interacting and trafficking (MIT) domain. By biochemical and functional experiments, we demonstrate that MDM2 binds spastin and regulates its levels in a post-transcriptional manner independently of the E3 ubiquitin ligase activity. Of relevance, treatment of spastin-deficient cells with the MDM2 inhibitor Nutlin-3a can restore spastin levels and functions, such as cytokinetic abscission and sorting of transferrin receptor. These findings identify MDM2 as a novel interactor of spastin and a potential druggable regulator of its protein levels.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"53"},"PeriodicalIF":6.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TAp63γ is the primary isoform of TP63 for tumor suppression but not development.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1038/s41420-025-02326-x
Xinbin Chen, Wenqiang Sun, Xiangmudong Kong, Xin Ming, Yanhong Zhang, Wensheng Yan, Shakur Mohibi, Mingyi Chen, Keith Mitchell, Jin Zhang

TP63 is expressed as TAp63 and ΔNp63 from the P1 and P2 promoters, respectively. While TAp63 and ΔNp63 are expressed as three TAp63α/β/γ and ΔNp63α/β/γ due to alternative splicing, only p63α (TA and ΔN) and p63γ (TA and ΔN) proteins are found to be detectable and likely to be responsible for p63-dependent activity. Previous studies implied and/or demonstrated that TAp63α, which contains an N-terminal activation domain conserved in p53, functions as a tumor suppressor by regulating an array of genes for growth suppression. By contrast, ΔNp63α, which also contains an N-terminal activation domain but is different from that in TAp63, regulates a unique set of genes and functions as a master regulator for development of epidermis and other stratified epithelial tissues. However, the biological function of p63γ is largely unexplored. To explore this, we generated a mouse model in that exon 10', a coding exon specific for p63γ, was deleted by CRISPR-cas9. We showed that mice deficient in p63γ are viable and futile, which is different from mice deficient in total TP63 or p63α. Like TAp63-deficient mice, p63γ-deficient mice have a short lifespan and are prone to spontanenous tumors. Additionally, loss of p63γ shortens the lifespan of tumor-free mice potentially via increased cellular senescence. Moreover, mice deficient in p63γ are prone to chronic inflammation in multiple organs and liver steatosis potentially via altered lipid metabolism. Single-cell RNA-seq revealed that loss of p63γ increases the expression of SCD1, a rate-limiting enzyme for synthesis of monounsaturated fatty acids, leading to altered lipid homeostasis. Together, our data indicate that TP63γ is the primary isoform of TP63 for tumor suppression but not development by maintaining normal inflammatory response and lipid homeostasis.

{"title":"TAp63γ is the primary isoform of TP63 for tumor suppression but not development.","authors":"Xinbin Chen, Wenqiang Sun, Xiangmudong Kong, Xin Ming, Yanhong Zhang, Wensheng Yan, Shakur Mohibi, Mingyi Chen, Keith Mitchell, Jin Zhang","doi":"10.1038/s41420-025-02326-x","DOIUrl":"10.1038/s41420-025-02326-x","url":null,"abstract":"<p><p>TP63 is expressed as TAp63 and ΔNp63 from the P1 and P2 promoters, respectively. While TAp63 and ΔNp63 are expressed as three TAp63α/β/γ and ΔNp63α/β/γ due to alternative splicing, only p63α (TA and ΔN) and p63γ (TA and ΔN) proteins are found to be detectable and likely to be responsible for p63-dependent activity. Previous studies implied and/or demonstrated that TAp63α, which contains an N-terminal activation domain conserved in p53, functions as a tumor suppressor by regulating an array of genes for growth suppression. By contrast, ΔNp63α, which also contains an N-terminal activation domain but is different from that in TAp63, regulates a unique set of genes and functions as a master regulator for development of epidermis and other stratified epithelial tissues. However, the biological function of p63γ is largely unexplored. To explore this, we generated a mouse model in that exon 10', a coding exon specific for p63γ, was deleted by CRISPR-cas9. We showed that mice deficient in p63γ are viable and futile, which is different from mice deficient in total TP63 or p63α. Like TAp63-deficient mice, p63γ-deficient mice have a short lifespan and are prone to spontanenous tumors. Additionally, loss of p63γ shortens the lifespan of tumor-free mice potentially via increased cellular senescence. Moreover, mice deficient in p63γ are prone to chronic inflammation in multiple organs and liver steatosis potentially via altered lipid metabolism. Single-cell RNA-seq revealed that loss of p63γ increases the expression of SCD1, a rate-limiting enzyme for synthesis of monounsaturated fatty acids, leading to altered lipid homeostasis. Together, our data indicate that TP63γ is the primary isoform of TP63 for tumor suppression but not development by maintaining normal inflammatory response and lipid homeostasis.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"51"},"PeriodicalIF":6.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging roles of aberrant alternative splicing in glioma.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1038/s41420-025-02323-0
Reda Ben Mrid, Sara El Guendouzi, Marco Mineo, Rachid El Fatimy

Gliomas represent a heterogeneous group of uniformly fatal brain tumors. Low and high-grade gliomas have diverse molecular signatures. Despite successful advances in understanding glioma, several genetic, epigenetic, and post-transcriptional alterations leave various targeted therapies ineffective, leading to a poor prognosis for high-grade glioma. Recent advances have revealed the implication of dysregulated alternative splicing (AS) events in glioma development. AS is a process that produces, from a single genomic sequence, several mature messenger RNAs. Splicing of pre-messenger RNAs concerns at least 95% of transcripts and constitutes an important mechanism in gene expression regulation. Dysregulation of this process, through variations in spliceosome components, aberrant splicing factors and RNA-binding protein activity, disproportionate regulation of non-coding RNAs, and abnormal mRNA methylation, can contribute to the disruption of AS. Such disruptions are usually associated with the development of several cancers, including glioma. Consequently, AS constitutes a key regulatory mechanism that could serve as a target for future therapies. In this review, we explore how AS events, spliceosome components, and their regulatory mechanisms play a critical role in glioma development, highlighting their potential as targets for innovative therapeutic strategies against this challenging cancer.

{"title":"The emerging roles of aberrant alternative splicing in glioma.","authors":"Reda Ben Mrid, Sara El Guendouzi, Marco Mineo, Rachid El Fatimy","doi":"10.1038/s41420-025-02323-0","DOIUrl":"10.1038/s41420-025-02323-0","url":null,"abstract":"<p><p>Gliomas represent a heterogeneous group of uniformly fatal brain tumors. Low and high-grade gliomas have diverse molecular signatures. Despite successful advances in understanding glioma, several genetic, epigenetic, and post-transcriptional alterations leave various targeted therapies ineffective, leading to a poor prognosis for high-grade glioma. Recent advances have revealed the implication of dysregulated alternative splicing (AS) events in glioma development. AS is a process that produces, from a single genomic sequence, several mature messenger RNAs. Splicing of pre-messenger RNAs concerns at least 95% of transcripts and constitutes an important mechanism in gene expression regulation. Dysregulation of this process, through variations in spliceosome components, aberrant splicing factors and RNA-binding protein activity, disproportionate regulation of non-coding RNAs, and abnormal mRNA methylation, can contribute to the disruption of AS. Such disruptions are usually associated with the development of several cancers, including glioma. Consequently, AS constitutes a key regulatory mechanism that could serve as a target for future therapies. In this review, we explore how AS events, spliceosome components, and their regulatory mechanisms play a critical role in glioma development, highlighting their potential as targets for innovative therapeutic strategies against this challenging cancer.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"50"},"PeriodicalIF":6.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802826/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMEM45A enhances palbociclib resistance and cellular glycolysis by activating AKT/mTOR signaling pathway in HR+ breast cancer.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-05 DOI: 10.1038/s41420-025-02336-9
Cui Chen, Zehong Chen, Jinze Zhao, Xinyun Wen, Hanming Yao, Zijin Weng, Huiping Xiong, Zongheng Zheng, Juekun Wu

Palbociclib, a CDK4/6 inhibitor, plays a crucial role in the treatment of HR+ breast cancer. However, resistance to palbociclib is a significant concern that merits further investigation. Our investigation identifies TMEM45A as a potential driver of palbociclib resistance and its association with increased cellular glycolysis. We demonstrate that TMEM45A is highly expressed in palbociclib-resistant breast cancer (BRCA) cells, correlating with enhanced tumor progression. Silencing TMEM45A enhances sensitivity to palbociclib, promotes cell cycle arrest and apoptosis, and inhibits the proliferation of BRCA cells. Moreover, attenuation of TMEM45A expression reduces cancer aggressiveness by decreasing the expression of EMT and glycolysis-related proteins. Subsequent gene set enrichment analysis (GSEA) confirms that TMEM45A activates the AKT/mTOR signaling pathway, which is integral to cell cycle progression and glycolysis. In a cell line-derived xenograft (CDX) mouse model, TMEM45A knockdown significantly restores sensitivity to palbociclib and suppresses tumor growth. Additionally, the use of engineered exosomes loaded with siRNA targeting TMEM45A presents a promising strategy for enhancing CDK4/6 inhibitor sensitivity without observable toxic side effects in a patient-derived xenograft (PDX) model. Collectively, our findings suggest that TMEM45A may be a therapeutic target for overcoming palbociclib resistance, and exosomal siRNA delivery could be a viable strategy for precision medicine in HR+ breast cancer.

{"title":"TMEM45A enhances palbociclib resistance and cellular glycolysis by activating AKT/mTOR signaling pathway in HR+ breast cancer.","authors":"Cui Chen, Zehong Chen, Jinze Zhao, Xinyun Wen, Hanming Yao, Zijin Weng, Huiping Xiong, Zongheng Zheng, Juekun Wu","doi":"10.1038/s41420-025-02336-9","DOIUrl":"10.1038/s41420-025-02336-9","url":null,"abstract":"<p><p>Palbociclib, a CDK4/6 inhibitor, plays a crucial role in the treatment of HR+ breast cancer. However, resistance to palbociclib is a significant concern that merits further investigation. Our investigation identifies TMEM45A as a potential driver of palbociclib resistance and its association with increased cellular glycolysis. We demonstrate that TMEM45A is highly expressed in palbociclib-resistant breast cancer (BRCA) cells, correlating with enhanced tumor progression. Silencing TMEM45A enhances sensitivity to palbociclib, promotes cell cycle arrest and apoptosis, and inhibits the proliferation of BRCA cells. Moreover, attenuation of TMEM45A expression reduces cancer aggressiveness by decreasing the expression of EMT and glycolysis-related proteins. Subsequent gene set enrichment analysis (GSEA) confirms that TMEM45A activates the AKT/mTOR signaling pathway, which is integral to cell cycle progression and glycolysis. In a cell line-derived xenograft (CDX) mouse model, TMEM45A knockdown significantly restores sensitivity to palbociclib and suppresses tumor growth. Additionally, the use of engineered exosomes loaded with siRNA targeting TMEM45A presents a promising strategy for enhancing CDK4/6 inhibitor sensitivity without observable toxic side effects in a patient-derived xenograft (PDX) model. Collectively, our findings suggest that TMEM45A may be a therapeutic target for overcoming palbociclib resistance, and exosomal siRNA delivery could be a viable strategy for precision medicine in HR+ breast cancer.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"47"},"PeriodicalIF":6.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rac1-dependent regulation of osteoclast and osteoblast differentiation by developmentally regulated GTP-binding 2.
IF 6.1 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-02-05 DOI: 10.1038/s41420-025-02338-7
Jung Ha Kim, Semun Seong, Kabsun Kim, Inyoung Kim, Jeong Woo Park, Jeong-Tae Koh, Nacksung Kim

Multiple small GTPases play crucial roles in bone homeostasis by regulating the differentiation and function of bone cells, including osteoclasts and osteoblasts. Here, we investigated whether developmentally regulated GTP-binding protein 2 (Drg2), a subfamily of the GTPase superfamily, could affect bone mass by regulating osteoclast and osteoblast differentiation. Downregulation of Drg2 using siRNA in bone marrow-derived macrophages inhibited osteoclast differentiation and function and Rac1 activation in vitro. Comparatively, Drg2 downregulation in calvarial-derived osteoprogenitor cells enhanced osteoblast differentiation and function in vitro. Rac1 activation was also suppressed by Drg2 downregulation in osteoprogenitor cells. Both osteoclast and osteoblast differentiation regulated by Drg2 downregulation were restored by suppressing Rac1 activity. Drg2-deficient mice showed increased bone mass due to a dramatic reduction in osteoclast numbers without significantly affecting the number of osteoblasts. Furthermore, Drg2 downregulation strongly inhibited RANKL-induced bone loss in vivo. In summary, Drg2 contributes to bone homeostasis by regulating the differentiation and function of osteoclasts and osteoblasts through Rac1 activation. In particular, the effect of Drg2 on osteoclasts is strong enough to regulate bone mass in vivo; therefore, Drg2 has significant potential for use as a therapeutic target in bone loss-related diseases.

{"title":"Rac1-dependent regulation of osteoclast and osteoblast differentiation by developmentally regulated GTP-binding 2.","authors":"Jung Ha Kim, Semun Seong, Kabsun Kim, Inyoung Kim, Jeong Woo Park, Jeong-Tae Koh, Nacksung Kim","doi":"10.1038/s41420-025-02338-7","DOIUrl":"10.1038/s41420-025-02338-7","url":null,"abstract":"<p><p>Multiple small GTPases play crucial roles in bone homeostasis by regulating the differentiation and function of bone cells, including osteoclasts and osteoblasts. Here, we investigated whether developmentally regulated GTP-binding protein 2 (Drg2), a subfamily of the GTPase superfamily, could affect bone mass by regulating osteoclast and osteoblast differentiation. Downregulation of Drg2 using siRNA in bone marrow-derived macrophages inhibited osteoclast differentiation and function and Rac1 activation in vitro. Comparatively, Drg2 downregulation in calvarial-derived osteoprogenitor cells enhanced osteoblast differentiation and function in vitro. Rac1 activation was also suppressed by Drg2 downregulation in osteoprogenitor cells. Both osteoclast and osteoblast differentiation regulated by Drg2 downregulation were restored by suppressing Rac1 activity. Drg2-deficient mice showed increased bone mass due to a dramatic reduction in osteoclast numbers without significantly affecting the number of osteoblasts. Furthermore, Drg2 downregulation strongly inhibited RANKL-induced bone loss in vivo. In summary, Drg2 contributes to bone homeostasis by regulating the differentiation and function of osteoclasts and osteoblasts through Rac1 activation. In particular, the effect of Drg2 on osteoclasts is strong enough to regulate bone mass in vivo; therefore, Drg2 has significant potential for use as a therapeutic target in bone loss-related diseases.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"48"},"PeriodicalIF":6.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Death Discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1