Development and characterization of segment-specific enteroids from the pig small intestine in Matrigel and transwell inserts: insights into susceptibility to porcine epidemic diarrhea Virus
Lu Yen, Rahul K. Nelli, Ning-Chieh Twu, Juan Carlos Mora-Díaz, Gino Castillo, Panchan Sitthicharoenchai, Luis G. Giménez-Lirola
{"title":"Development and characterization of segment-specific enteroids from the pig small intestine in Matrigel and transwell inserts: insights into susceptibility to porcine epidemic diarrhea Virus","authors":"Lu Yen, Rahul K. Nelli, Ning-Chieh Twu, Juan Carlos Mora-Díaz, Gino Castillo, Panchan Sitthicharoenchai, Luis G. Giménez-Lirola","doi":"10.3389/fimmu.2024.1451154","DOIUrl":null,"url":null,"abstract":"IntroductionThe critical early stages of infection and innate immune responses to porcine epidemic diarrhea virus (PEDV) at the intestinal epithelium remain underexplored due to the limitations of traditional cell culture and animal models. This study aims to establish a porcine enteroid culture model to investigate potential differences in susceptibility to infection across segments of the porcine small intestine (duodenum, jejunum, and ileum).MethodsIntestinal crypt cells from nursery pigs were cultured in Matrigel to differentiate into porcine enteroid monolayer cultures (PEMCs). Following characterization, PEMCs were enzymatically dissociated and subcultured on transwell inserts (PETCs) for apical surface exposure and infection studies. Characterization of region-specific PEMCs and PETCs included assessment of morphology, proliferation, viability, and cellular phenotyping via immunohistochemistry/immunocytochemistry and gene expression analysis. Subsequently, PETCs were inoculated with 10<jats:sup>5</jats:sup> TCID<jats:sub>50</jats:sub> (50% tissue culture infectious dose)/mL of a high pathogenic PEDV non-S INDEL strain and incubated for 24 h. Infection outcomes were assessed by cytopathic effect, PEDV N protein expression (immunofluorescence assay, IFA), and PEDV N-gene detection (quantitative reverse transcription polymerase chain reaction, RT-qPCR).ResultsNo significant morphological and phenotypical differences were observed among PEMCs and PETCs across intestinal regions, resembling the porcine intestinal epithelium. Although PETCs established from different segments of the small intestine were susceptible to PEDV infection, jejunum-derived PETCs exhibited higher PEDV replication, confirmed by IFA and RT-qPCR.DiscussionThis segment-specific enteroid culture model provides a reliable platform for virological studies, offering a controlled environment that overcomes the limitations of <jats:italic>in vivo</jats:italic> and traditional cell culture methods. Standardizing culture conditions and characterizing the model are essential for advancing enteroid-based infection models.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2024.1451154","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionThe critical early stages of infection and innate immune responses to porcine epidemic diarrhea virus (PEDV) at the intestinal epithelium remain underexplored due to the limitations of traditional cell culture and animal models. This study aims to establish a porcine enteroid culture model to investigate potential differences in susceptibility to infection across segments of the porcine small intestine (duodenum, jejunum, and ileum).MethodsIntestinal crypt cells from nursery pigs were cultured in Matrigel to differentiate into porcine enteroid monolayer cultures (PEMCs). Following characterization, PEMCs were enzymatically dissociated and subcultured on transwell inserts (PETCs) for apical surface exposure and infection studies. Characterization of region-specific PEMCs and PETCs included assessment of morphology, proliferation, viability, and cellular phenotyping via immunohistochemistry/immunocytochemistry and gene expression analysis. Subsequently, PETCs were inoculated with 105 TCID50 (50% tissue culture infectious dose)/mL of a high pathogenic PEDV non-S INDEL strain and incubated for 24 h. Infection outcomes were assessed by cytopathic effect, PEDV N protein expression (immunofluorescence assay, IFA), and PEDV N-gene detection (quantitative reverse transcription polymerase chain reaction, RT-qPCR).ResultsNo significant morphological and phenotypical differences were observed among PEMCs and PETCs across intestinal regions, resembling the porcine intestinal epithelium. Although PETCs established from different segments of the small intestine were susceptible to PEDV infection, jejunum-derived PETCs exhibited higher PEDV replication, confirmed by IFA and RT-qPCR.DiscussionThis segment-specific enteroid culture model provides a reliable platform for virological studies, offering a controlled environment that overcomes the limitations of in vivo and traditional cell culture methods. Standardizing culture conditions and characterizing the model are essential for advancing enteroid-based infection models.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.