{"title":"Genome sequence of the sugarcane aphid, Melanaphis sacchari (Hemiptera: Aphididae)","authors":"Jinshuai Zhao, Liqiang Xie, Xinrui Zhao, Luhua Li, Jianghui Cui, Jinfeng Chen","doi":"10.1093/g3journal/jkae223","DOIUrl":null,"url":null,"abstract":"The sugarcane aphid, Melanaphis sacchari (Zehntner, 1897), is an agricultural pest that causes damage to plants in the Poaceae (the grasses) family, such as sorghum and sugarcane. Here, we used Nanopore long reads and Hi-C interaction map to generate a chromosome-level assembly with a total length of 356.1 Mb, of which 85.5% (304.6 Mb) is contained within the three autosomes and the X chromosome. Repetitive sequences accounted for 16.29% of the chromosomes and a total of 12,530 protein-coding genes were annotated, achieving 95.8% benchmarking universal single-copy orthologs (BUSCO) gene completeness. This offers a substantial improvement compared to previous low-quality genomic resources. Phylogenomic analysis by comparing M. sacchari with twenty-four published aphid genomes representing three aphid tribes reveals that M. sacchari belongs to the tribe Aphidini and maintained a conserved chromosome structure with other Aphidini species. The high-quality genomic resources reported in this study will be useful for understanding the evolution of aphid genomes and studying pest management of M. sacchari.","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":"3 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae223","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The sugarcane aphid, Melanaphis sacchari (Zehntner, 1897), is an agricultural pest that causes damage to plants in the Poaceae (the grasses) family, such as sorghum and sugarcane. Here, we used Nanopore long reads and Hi-C interaction map to generate a chromosome-level assembly with a total length of 356.1 Mb, of which 85.5% (304.6 Mb) is contained within the three autosomes and the X chromosome. Repetitive sequences accounted for 16.29% of the chromosomes and a total of 12,530 protein-coding genes were annotated, achieving 95.8% benchmarking universal single-copy orthologs (BUSCO) gene completeness. This offers a substantial improvement compared to previous low-quality genomic resources. Phylogenomic analysis by comparing M. sacchari with twenty-four published aphid genomes representing three aphid tribes reveals that M. sacchari belongs to the tribe Aphidini and maintained a conserved chromosome structure with other Aphidini species. The high-quality genomic resources reported in this study will be useful for understanding the evolution of aphid genomes and studying pest management of M. sacchari.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.