Lasse Bohlen, Julian Rosenberger, Patrick Zschech, Mathias Kraus
{"title":"Leveraging interpretable machine learning in intensive care","authors":"Lasse Bohlen, Julian Rosenberger, Patrick Zschech, Mathias Kraus","doi":"10.1007/s10479-024-06226-8","DOIUrl":null,"url":null,"abstract":"<p>In healthcare, especially within intensive care units (ICU), informed decision-making by medical professionals is crucial due to the complexity of medical data. Healthcare analytics seeks to support these decisions by generating accurate predictions through advanced machine learning (ML) models, such as boosted decision trees and random forests. While these models frequently exhibit accurate predictions across various medical tasks, they often lack interpretability. To address this challenge, researchers have developed interpretable ML models that balance accuracy and interpretability. In this study, we evaluate the performance gap between interpretable and black-box models in two healthcare prediction tasks, mortality and length-of-stay prediction in ICU settings. We focus specifically on the family of generalized additive models (GAMs) as powerful interpretable ML models. Our assessment uses the publicly available Medical Information Mart for Intensive Care dataset, and we analyze the models based on (i) predictive performance, (ii) the influence of compact feature sets (i.e., only few features) on predictive performance, and (iii) interpretability and consistency with medical knowledge. Our results show that interpretable models achieve competitive performance, with a minor decrease of 0.2–0.9 percentage points in area under the receiver operating characteristic relative to state-of-the-art black-box models, while preserving complete interpretability. This remains true even for parsimonious models that use only 2.2 % of patient features. Our study highlights the potential of interpretable models to improve decision-making in ICUs by providing medical professionals with easily understandable and verifiable predictions.</p>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"19 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10479-024-06226-8","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In healthcare, especially within intensive care units (ICU), informed decision-making by medical professionals is crucial due to the complexity of medical data. Healthcare analytics seeks to support these decisions by generating accurate predictions through advanced machine learning (ML) models, such as boosted decision trees and random forests. While these models frequently exhibit accurate predictions across various medical tasks, they often lack interpretability. To address this challenge, researchers have developed interpretable ML models that balance accuracy and interpretability. In this study, we evaluate the performance gap between interpretable and black-box models in two healthcare prediction tasks, mortality and length-of-stay prediction in ICU settings. We focus specifically on the family of generalized additive models (GAMs) as powerful interpretable ML models. Our assessment uses the publicly available Medical Information Mart for Intensive Care dataset, and we analyze the models based on (i) predictive performance, (ii) the influence of compact feature sets (i.e., only few features) on predictive performance, and (iii) interpretability and consistency with medical knowledge. Our results show that interpretable models achieve competitive performance, with a minor decrease of 0.2–0.9 percentage points in area under the receiver operating characteristic relative to state-of-the-art black-box models, while preserving complete interpretability. This remains true even for parsimonious models that use only 2.2 % of patient features. Our study highlights the potential of interpretable models to improve decision-making in ICUs by providing medical professionals with easily understandable and verifiable predictions.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.