Tunable surface plasmon properties of hollow cylindrical nanocomposite structures

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-19 DOI:10.1007/s11082-024-07524-y
Jing Jin, Yun Zhou, Zhiwei Jiao, Zhicheng Dong, Peimei Dong, Xudong Cheng
{"title":"Tunable surface plasmon properties of hollow cylindrical nanocomposite structures","authors":"Jing Jin, Yun Zhou, Zhiwei Jiao, Zhicheng Dong, Peimei Dong, Xudong Cheng","doi":"10.1007/s11082-024-07524-y","DOIUrl":null,"url":null,"abstract":"<p>Hollow nanostructures are currently a typical topological structure in plasmonic optics and exhibit excellent surface plasmon resonance control capabilities. This article presents a composite structure model of a hollow cylindrical gold nanoparticle and a gold film. The absorption spectrum is calculated using the finite-difference time-domain (FDTD) method. Results indicate that this hollow nano-composite structure exhibits excellent plasmonic resonance and electromagnetic field enhancement effects. The impact of cavity structural parameters on the plasmonic optics of the composite structure is explored, highlighting the influence of inner and outer cavity diameters on the coupling of surface plasmon fields. By introducing symmetry breaking to achieve ultra-sensitive control over the optical properties of the structure, variations in cavity parameters result in more complex coupling effects. The asymmetric hollow nanostructure enhances plasmonic field intensity, allowing precise modulation of resonance peaks and significantly increasing electric field enhancement. This research demonstrates the potential for systematically adjusting cavity parameters and symmetry to achieve precise modulation of plasmonic resonance modes in optical device design and optimization.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11082-024-07524-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hollow nanostructures are currently a typical topological structure in plasmonic optics and exhibit excellent surface plasmon resonance control capabilities. This article presents a composite structure model of a hollow cylindrical gold nanoparticle and a gold film. The absorption spectrum is calculated using the finite-difference time-domain (FDTD) method. Results indicate that this hollow nano-composite structure exhibits excellent plasmonic resonance and electromagnetic field enhancement effects. The impact of cavity structural parameters on the plasmonic optics of the composite structure is explored, highlighting the influence of inner and outer cavity diameters on the coupling of surface plasmon fields. By introducing symmetry breaking to achieve ultra-sensitive control over the optical properties of the structure, variations in cavity parameters result in more complex coupling effects. The asymmetric hollow nanostructure enhances plasmonic field intensity, allowing precise modulation of resonance peaks and significantly increasing electric field enhancement. This research demonstrates the potential for systematically adjusting cavity parameters and symmetry to achieve precise modulation of plasmonic resonance modes in optical device design and optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空心圆柱形纳米复合结构的可调表面等离子特性
空心纳米结构是目前等离子光学领域的一种典型拓扑结构,具有出色的表面等离子共振控制能力。本文介绍了一种由空心圆柱形金纳米粒子和金薄膜组成的复合结构模型。利用有限差分时域(FDTD)方法计算了吸收光谱。结果表明,这种中空纳米复合结构具有优异的等离子体共振和电磁场增强效应。研究探讨了空腔结构参数对复合结构质子光学的影响,突出了空腔内外直径对表面等离子体场耦合的影响。通过引入对称性破坏来实现对结构光学特性的超灵敏控制,空腔参数的变化会产生更复杂的耦合效应。非对称中空纳米结构增强了等离子场强度,可精确调制共振峰,显著提高电场增强效果。这项研究展示了在光学器件设计和优化中系统调整空腔参数和对称性以实现对等离子共振模式精确调制的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1