Linear Jamming Bandits: Learning to Jam 5G-based Coded Communications Systems

Zachary Schutz, Daniel J. Jakubisin, Charles E. Thornton, R. Michael Buehrer
{"title":"Linear Jamming Bandits: Learning to Jam 5G-based Coded Communications Systems","authors":"Zachary Schutz, Daniel J. Jakubisin, Charles E. Thornton, R. Michael Buehrer","doi":"arxiv-2409.11191","DOIUrl":null,"url":null,"abstract":"We study jamming of an OFDM-modulated signal which employs forward error\ncorrection coding. We extend this to leverage reinforcement learning with a\ncontextual bandit to jam a 5G-based system implementing some aspects of the 5G\nprotocol. This model introduces unreliable reward feedback in the form of\nACK/NACK observations to the jammer to understand the effect of how imperfect\nobservations of errors can affect the jammer's ability to learn. We gain\ninsights into the convergence time of the jammer and its ability to jam a\nvictim 5G waveform, as well as insights into the vulnerabilities of wireless\ncommunications for reinforcement learning-based jamming.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study jamming of an OFDM-modulated signal which employs forward error correction coding. We extend this to leverage reinforcement learning with a contextual bandit to jam a 5G-based system implementing some aspects of the 5G protocol. This model introduces unreliable reward feedback in the form of ACK/NACK observations to the jammer to understand the effect of how imperfect observations of errors can affect the jammer's ability to learn. We gain insights into the convergence time of the jammer and its ability to jam a victim 5G waveform, as well as insights into the vulnerabilities of wireless communications for reinforcement learning-based jamming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性干扰匪帮:学习干扰基于 5G 的编码通信系统
我们研究了对采用前向纠错编码的 OFDM 调制信号的干扰。我们将其扩展到利用强化学习和上下文强盗来干扰一个基于 5G 的系统,该系统实现了 5G 协议的某些方面。该模型以ACK/NACK 观察的形式向干扰者引入了不可靠的奖励反馈,以了解对错误的不完美观察如何影响干扰者的学习能力。我们深入了解了干扰器的收敛时间及其干扰受害者 5G 波形的能力,并深入了解了无线通信在基于强化学习的干扰方面的脆弱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1