RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge

Alejandro Lancho, Amir Weiss, Gary C. F. Lee, Tejas Jayashankar, Binoy Kurien, Yury Polyanskiy, Gregory W. Wornell
{"title":"RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge","authors":"Alejandro Lancho, Amir Weiss, Gary C. F. Lee, Tejas Jayashankar, Binoy Kurien, Yury Polyanskiy, Gregory W. Wornell","doi":"arxiv-2409.08839","DOIUrl":null,"url":null,"abstract":"This paper addresses the critical problem of interference rejection in\nradio-frequency (RF) signals using a novel, data-driven approach that leverages\nstate-of-the-art AI models. Traditionally, interference rejection algorithms\nare manually tailored to specific types of interference. This work introduces a\nmore scalable data-driven solution and contains the following contributions.\nFirst, we present an insightful signal model that serves as a foundation for\ndeveloping and analyzing interference rejection algorithms. Second, we\nintroduce the RF Challenge, a publicly available dataset featuring diverse RF\nsignals along with code templates, which facilitates data-driven analysis of RF\nsignal problems. Third, we propose novel AI-based rejection algorithms,\nspecifically architectures like UNet and WaveNet, and evaluate their\nperformance across eight different signal mixture types. These models\ndemonstrate superior performance exceeding traditional methods like matched\nfiltering and linear minimum mean square error estimation by up to two orders\nof magnitude in bit-error rate. Fourth, we summarize the results from an open\ncompetition hosted at 2024 IEEE International Conference on Acoustics, Speech,\nand Signal Processing (ICASSP 2024) based on the RF Challenge, highlighting the\nsignificant potential for continued advancements in this area. Our findings\nunderscore the promise of deep learning algorithms in mitigating interference,\noffering a strong foundation for future research.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach that leverages state-of-the-art AI models. Traditionally, interference rejection algorithms are manually tailored to specific types of interference. This work introduces a more scalable data-driven solution and contains the following contributions. First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms. Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates, which facilitates data-driven analysis of RF signal problems. Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types. These models demonstrate superior performance exceeding traditional methods like matched filtering and linear minimum mean square error estimation by up to two orders of magnitude in bit-error rate. Fourth, we summarize the results from an open competition hosted at 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024) based on the RF Challenge, highlighting the significant potential for continued advancements in this area. Our findings underscore the promise of deep learning algorithms in mitigating interference, offering a strong foundation for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
射频挑战:数据驱动的射频信号分离挑战
本文采用一种新颖的数据驱动方法,利用最先进的人工智能模型来解决射频(RF)信号中的干扰抑制这一关键问题。传统上,干扰抑制算法是针对特定干扰类型手动定制的。首先,我们提出了一个具有洞察力的信号模型,作为开发和分析干扰抑制算法的基础。其次,我们引入了射频挑战赛(RF Challenge),这是一个公开可用的数据集,包含各种射频信号和代码模板,有助于对射频信号问题进行数据驱动分析。第三,我们提出了基于人工智能的新型剔除算法,特别是 UNet 和 WaveNet 等架构,并评估了它们在八种不同信号混合物类型中的性能。这些模型表现出优越的性能,比匹配过滤和线性最小均方误差估计等传统方法的误码率高出两个数量级。第四,我们总结了在 2024 年 IEEE 国际声学、语音和信号处理大会(ICASSP 2024)上举办的基于射频挑战赛的公开竞赛的结果,强调了该领域持续进步的巨大潜力。我们的研究结果进一步证实了深度学习算法在缓解干扰方面的前景,为未来的研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1