Emo-DPO: Controllable Emotional Speech Synthesis through Direct Preference Optimization

Xiaoxue Gao, Chen Zhang, Yiming Chen, Huayun Zhang, Nancy F. Chen
{"title":"Emo-DPO: Controllable Emotional Speech Synthesis through Direct Preference Optimization","authors":"Xiaoxue Gao, Chen Zhang, Yiming Chen, Huayun Zhang, Nancy F. Chen","doi":"arxiv-2409.10157","DOIUrl":null,"url":null,"abstract":"Current emotional text-to-speech (TTS) models predominantly conduct\nsupervised training to learn the conversion from text and desired emotion to\nits emotional speech, focusing on a single emotion per text-speech pair. These\nmodels only learn the correct emotional outputs without fully comprehending\nother emotion characteristics, which limits their capabilities of capturing the\nnuances between different emotions. We propose a controllable Emo-DPO approach,\nwhich employs direct preference optimization to differentiate subtle emotional\nnuances between emotions through optimizing towards preferred emotions over\nless preferred emotional ones. Instead of relying on traditional neural\narchitectures used in existing emotional TTS models, we propose utilizing the\nemotion-aware LLM-TTS neural architecture to leverage LLMs' in-context learning\nand instruction-following capabilities. Comprehensive experiments confirm that\nour proposed method outperforms the existing baselines.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current emotional text-to-speech (TTS) models predominantly conduct supervised training to learn the conversion from text and desired emotion to its emotional speech, focusing on a single emotion per text-speech pair. These models only learn the correct emotional outputs without fully comprehending other emotion characteristics, which limits their capabilities of capturing the nuances between different emotions. We propose a controllable Emo-DPO approach, which employs direct preference optimization to differentiate subtle emotional nuances between emotions through optimizing towards preferred emotions over less preferred emotional ones. Instead of relying on traditional neural architectures used in existing emotional TTS models, we propose utilizing the emotion-aware LLM-TTS neural architecture to leverage LLMs' in-context learning and instruction-following capabilities. Comprehensive experiments confirm that our proposed method outperforms the existing baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emo-DPO:通过直接偏好优化实现可控情感语音合成
目前的情感文本到语音(TTS)模型主要是通过监督训练来学习从文本和所需情感到情感语音的转换,重点是每个文本-语音对的单一情感。这些模型只能学习正确的情感输出,而不能完全理解其他情感特征,这限制了它们捕捉不同情感之间差异的能力。我们提出了一种可控的 Emo-DPO 方法,该方法采用直接偏好优化,通过优化偏好情感而非非偏好情感来区分不同情感之间微妙的情感差异。我们没有依赖现有情感 TTS 模型中使用的传统神经架构,而是提议利用情感感知 LLM-TTS 神经架构,以充分利用 LLM 的语境学习和指令跟随能力。综合实验证实,我们提出的方法优于现有的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1