Turbo Equalization with Coarse Quantization using the Information Bottleneck Method

Philipp Mohr, Jasper Brüggmann, Gerhard Bauch
{"title":"Turbo Equalization with Coarse Quantization using the Information Bottleneck Method","authors":"Philipp Mohr, Jasper Brüggmann, Gerhard Bauch","doi":"arxiv-2409.09004","DOIUrl":null,"url":null,"abstract":"This paper proposes a turbo equalizer for intersymbol interference channels\n(ISI) that uses coarsely quantized messages across all receiver components.\nLookup tables (LUTs) carry out compression operations designed with the\ninformation bottleneck method aiming to maximize relevant mutual information.\nThe turbo setup consists of an equalizer and a decoder that provide extrinsic\ninformation to each other over multiple turbo iterations. We develop simplified\nLUT structures to incorporate the decoder feedback in the equalizer with\nsignificantly reduced complexity. The proposed receiver is optimized for\nselected ISI channels. A conceptual hardware implementation is developed to\ncompare the area efficiency and error correction performance. A thorough\nanalysis reveals that LUT-based configurations with very coarse quantization\ncan achieve higher area efficiency than conventional equalizers. Moreover, the\nproposed turbo setups can outperform the respective non-turbo setups regarding\narea efficiency and error correction capability.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a turbo equalizer for intersymbol interference channels (ISI) that uses coarsely quantized messages across all receiver components. Lookup tables (LUTs) carry out compression operations designed with the information bottleneck method aiming to maximize relevant mutual information. The turbo setup consists of an equalizer and a decoder that provide extrinsic information to each other over multiple turbo iterations. We develop simplified LUT structures to incorporate the decoder feedback in the equalizer with significantly reduced complexity. The proposed receiver is optimized for selected ISI channels. A conceptual hardware implementation is developed to compare the area efficiency and error correction performance. A thorough analysis reveals that LUT-based configurations with very coarse quantization can achieve higher area efficiency than conventional equalizers. Moreover, the proposed turbo setups can outperform the respective non-turbo setups regarding area efficiency and error correction capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用信息瓶颈法进行粗量化的 Turbo 均衡
本文提出了一种针对符号间干扰信道(ISI)的涡轮均衡器,它在所有接收器组件中使用粗量化信息。查找表(LUT)执行压缩操作,其设计采用了信息瓶颈法,旨在最大化相关互信息。我们开发了简化的 LUT 结构,将解码器反馈纳入均衡器,大大降低了复杂性。建议的接收器针对选定的 ISI 信道进行了优化。为了比较面积效率和纠错性能,我们开发了一种概念性硬件实现方法。透彻的分析表明,与传统均衡器相比,基于 LUT 的非常粗量化配置能实现更高的面积效率。此外,在面积效率和纠错能力方面,拟议的涡轮增压设置优于相应的非涡轮增压设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Deconvolution on Graphs: Exact and Stable Recovery End-to-End Learning of Transmitter and Receiver Filters in Bandwidth Limited Fiber Optic Communication Systems Atmospheric Turbulence-Immune Free Space Optical Communication System based on Discrete-Time Analog Transmission User Subgrouping in Scalable Cell-Free Massive MIMO Multicasting Systems Covert Communications Without Pre-Sharing of Side Information and Channel Estimation Over Quasi-Static Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1