{"title":"In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure","authors":"Zeqin Cui, Qifeng Hu, Jianzhong Wang, Lei Zhou, Xiaohu Hao, Wenxian Wang, Weiguo Li, Weili Cheng, Cheng Chang","doi":"10.1007/s11706-024-0699-3","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc-based composites represent promising materials for orthopedic implants owing to their adjustable degradation rates and excellent biocompatibility. In this study, a series of Zn–10Mg–<i>x</i>HA (<i>x</i> = 0–5 wt.%) composites with the core–shell structure were prepared through spark plasma sintering, and their microstructural, mechanical, and <i>in vitro</i> properties were systematically evaluated. Results showed that the doped hydroxyapatite (HA) is concentrated at the outer edge of the MgZn<sub>2</sub> shell layer. The compression strength of the Zn–10Mg–HA composite gradually decreased with the increase of the HA content, while its corrosion rate decreased initially and then increased. The corrosion resistance of the composite with the addition of 1 wt.% HA was improved compared to that of Zn–10Mg–0HA. However, the further increase of the HA content beyond 1 wt.% resulted in a faster degradation of the composite. Moreover, the Zn–10Mg–1HA composite significantly enhanced the activity of MC3T3-E1 osteoblasts. Based on such findings, it is revealed that the composite containing 1 wt.% HA exhibits superior overall properties and is anticipated to serve as a promising candidate for bone implant materials.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0699-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-based composites represent promising materials for orthopedic implants owing to their adjustable degradation rates and excellent biocompatibility. In this study, a series of Zn–10Mg–xHA (x = 0–5 wt.%) composites with the core–shell structure were prepared through spark plasma sintering, and their microstructural, mechanical, and in vitro properties were systematically evaluated. Results showed that the doped hydroxyapatite (HA) is concentrated at the outer edge of the MgZn2 shell layer. The compression strength of the Zn–10Mg–HA composite gradually decreased with the increase of the HA content, while its corrosion rate decreased initially and then increased. The corrosion resistance of the composite with the addition of 1 wt.% HA was improved compared to that of Zn–10Mg–0HA. However, the further increase of the HA content beyond 1 wt.% resulted in a faster degradation of the composite. Moreover, the Zn–10Mg–1HA composite significantly enhanced the activity of MC3T3-E1 osteoblasts. Based on such findings, it is revealed that the composite containing 1 wt.% HA exhibits superior overall properties and is anticipated to serve as a promising candidate for bone implant materials.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.