{"title":"Circadian regulatory networks of glucose homeostasis and its disruption as a potential cause of under-nutrition.","authors":"Shinsuke Onuma,Masanobu Kawai","doi":"10.1210/endocr/bqae126","DOIUrl":null,"url":null,"abstract":"The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either over-nutrition or under-nutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to under-nutrition due to impaired efficient utilization of nutrients.","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":"40 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either over-nutrition or under-nutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to under-nutrition due to impaired efficient utilization of nutrients.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.