Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice.

IF 3.8 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrinology Pub Date : 2025-01-13 DOI:10.1210/endocr/bqaf001
Nicholas J Queen, Xunchang Zou, Wei Huang, Tawfiq Mohammed, Lei Cao
{"title":"Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice.","authors":"Nicholas J Queen, Xunchang Zou, Wei Huang, Tawfiq Mohammed, Lei Cao","doi":"10.1210/endocr/bqaf001","DOIUrl":null,"url":null,"abstract":"<p><p>Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here, we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor (BDNF) gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqaf001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and growth hormone therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here, we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor (BDNF) gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
普拉德-威利综合征(PWS)是一种罕见的遗传病,会导致发育迟缓、智力障碍、持续饥饿、肥胖、内分泌功能障碍以及各种行为和神经精神异常。PWS 的标准治疗方法仅限于严格监督食物摄入量和生长激素治疗,这凸显了对新治疗策略的需求尚未得到满足。丰富环境(EE)是一种提供身体、社交和认知刺激的居住环境,对身心健康有广泛的益处。在这里,我们评估了在Magel2-null PWS小鼠模型中EE对代谢和行为的影响。在代谢异常发生后开始的 EE 足以使雄性 Magel2-null小鼠的体重和身体成分恢复正常、逆转高瘦血症并改善葡萄糖代谢。EE诱导的这些代谢改善与下丘脑脑源性神经营养因子(BDNF)基因疗法的效果相当,但其潜在机制仍有待确定。这些数据表明,EE等生物行为干预可有效治疗与PWS相关的代谢异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrinology
Endocrinology 医学-内分泌学与代谢
CiteScore
8.10
自引率
4.20%
发文量
195
审稿时长
2-3 weeks
期刊介绍: The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.
期刊最新文献
Environmental enrichment normalizes metabolic function in the murine model of Prader-Willi syndrome Magel2-null mice. Identification of βIIΣ1-spectrin as a binding partner of the GH-regulated human obesity scaffold protein SH2B1. Transcriptional Cofactors for Thyroid Hormone Receptors. GLP-1 and Its Analogs: Does Sex Matter? Hormonal Actions in the Medial Preoptic Area Governing Parental Behavior: Novel Insights From New Tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1