Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-20 DOI:10.1021/acsmaterialslett.4c00857
Mahmoud G. Ahmed, Ying Fan Tay, Mengyuan Zhang, Sing Yang Chiam, Lydia H. Wong
{"title":"Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction","authors":"Mahmoud G. Ahmed, Ying Fan Tay, Mengyuan Zhang, Sing Yang Chiam, Lydia H. Wong","doi":"10.1021/acsmaterialslett.4c00857","DOIUrl":null,"url":null,"abstract":"Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (O<sub>vac</sub>). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal spinel oxide using high-throughput methods. The oxide contains Fe and Cu substituted into Co sites following a stoichiometry of Fe<sub>0.6</sub>Cu<sub>0.6</sub>Co<sub>1.8</sub>O<sub>4</sub>. The dual cation substitution of Fe and Cu manipulates the electronic states and generates O<sub>vac</sub>, thereby generating more accessible active species. This significantly improves the OH<sup>–</sup> adsorption capacity on spinel oxide triggering a more favorable OER reaction with a low overpotential of 265 mV at 10 mA cm<sup>–2</sup> and high durability in an alkaline medium. Our work not only presents the utilization of a high-throughput approach to explore efficient catalysts with optimal composition but also provides useful insights into the modulation of electronic states for enhanced catalytic performance.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c00857","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multimetal spinel oxides are promising candidates for the oxygen evolution reaction (OER) due to their ability to offer more accessible active sites and oxygen vacancies (Ovac). However, the utilization of redox-active species in spinel oxides is limited. Herein, we unveil an efficient multimetal spinel oxide using high-throughput methods. The oxide contains Fe and Cu substituted into Co sites following a stoichiometry of Fe0.6Cu0.6Co1.8O4. The dual cation substitution of Fe and Cu manipulates the electronic states and generates Ovac, thereby generating more accessible active species. This significantly improves the OH adsorption capacity on spinel oxide triggering a more favorable OER reaction with a low overpotential of 265 mV at 10 mA cm–2 and high durability in an alkaline medium. Our work not only presents the utilization of a high-throughput approach to explore efficient catalysts with optimal composition but also provides useful insights into the modulation of electronic states for enhanced catalytic performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铁和铜置换调整尖晶石 Co3O4 氧化物的表面电子结构以增强氧进化反应
多金属尖晶石氧化物能够提供更多的活性位点和氧空位(Ovac),因此是氧气进化反应(OER)的理想候选物质。然而,尖晶石氧化物中氧化还原活性物种的利用率有限。在此,我们利用高通量方法揭示了一种高效的多金属尖晶石氧化物。该氧化物中的 Fe 和 Cu 按照 Fe0.6Cu0.6Co1.8O4 的化学计量取代了 Co 的位点。Fe和Cu的双阳离子置换操纵了电子状态并产生了Ovac,从而产生了更容易获得的活性物种。这大大提高了尖晶石氧化物对 OH- 的吸附能力,引发了更有利的 OER 反应,在 10 mA cm-2 时过电位低至 265 mV,并且在碱性介质中具有很高的耐久性。我们的工作不仅展示了利用高通量方法探索具有最佳组成的高效催化剂的方法,而且还为调控电子状态以提高催化性能提供了有益的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1