Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich
{"title":"The Influence of Microstructure and Process Design on the Plastic Stability of 4 wt% Medium‐Manganese Steels","authors":"Oguz Gülbay, Klaus Büßenschütt, Aleksandra Kozlowska, Adam Grajcar, Alexander Gramlich","doi":"10.1002/srin.202400575","DOIUrl":null,"url":null,"abstract":"The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of different microstructures on the plastic stability of an air‐hardened industrially produced medium‐manganese steel is presented. For this matter, heat treatment parameters before and during intercritical annealing (IA) are varied, to achieve different microstructures. The resulting duplex microstructure is consecutively tested by tensile tests, which are monitored by digital image correlation (DIC) to obtain information on the local plastic deformation. The tests are accompanied by microstructure investigations using optical, scanning electron, and transmission electron microscopy. Finally, X‐ray and electron backscatter diffraction experiments are performed before and after deformation, to describe the altering phase fractions. It is demonstrated that the effect of the deformation temperature prior to IA treatment has a significant influence on the duplex microstructure, as it changes the austenite morphology from lamellar to globular and increases the phase fraction. The change in austenite phase fraction and morphology results in a higher yield strength (≈100 MPa), as well as higher uniform and total elongations (+2% and +5%, respectively). The DIC and tensile tests reveal that these differences in the austenite phase lead to a complete change in the strain hardening behavior, from continuous flow to discontinuous serrated flow, with clearly visible deformation bands during plastic deformation.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming