Experimental Determination of Slag Emissivities for Enhanced Slag Control by Infrared‐Based Systems

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING steel research international Pub Date : 2024-09-18 DOI:10.1002/srin.202400277
Bharath Vasudev Rangavittal, Herbert Köchner, Björn Glaser
{"title":"Experimental Determination of Slag Emissivities for Enhanced Slag Control by Infrared‐Based Systems","authors":"Bharath Vasudev Rangavittal, Herbert Köchner, Björn Glaser","doi":"10.1002/srin.202400277","DOIUrl":null,"url":null,"abstract":"For today's high‐quality steel production, good control of slag composition is essential in secondary steelmaking. However, the conventional slag analysis practice, involving sampling, sample preparation, and analysis, is very time‐consuming. This work is the first step toward an investigation of infrared (IR)‐based systems and can be used for online slag composition monitoring using the principle that different slag compositions have different emissivities in the IR wavelength range. Therefore, this work experimentally determines emissivity values of slags as a function of composition at steelmaking temperature, since available data for slags are very limited in the literature. The emissivities of three different slag compositions belonging to the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CaO–SiO<jats:sub>2</jats:sub>–MgO system are investigated at 1773 K. The investigated emissivities are in the range of 0.75–0.87, with the best repeatability seen in the slag which is fully liquid at 1773 K. Variations in emissivities are observed within the other slags due to the presence of solid phases. Although the data clearly indicate a difference of emissivities as a function of slag composition, further experiments must be performed to evaluate the emissivities of other characteristic slags at different temperatures in order to further assess the applicability of IR‐based systems for slag composition control.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400277","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

For today's high‐quality steel production, good control of slag composition is essential in secondary steelmaking. However, the conventional slag analysis practice, involving sampling, sample preparation, and analysis, is very time‐consuming. This work is the first step toward an investigation of infrared (IR)‐based systems and can be used for online slag composition monitoring using the principle that different slag compositions have different emissivities in the IR wavelength range. Therefore, this work experimentally determines emissivity values of slags as a function of composition at steelmaking temperature, since available data for slags are very limited in the literature. The emissivities of three different slag compositions belonging to the Al2O3–CaO–SiO2–MgO system are investigated at 1773 K. The investigated emissivities are in the range of 0.75–0.87, with the best repeatability seen in the slag which is fully liquid at 1773 K. Variations in emissivities are observed within the other slags due to the presence of solid phases. Although the data clearly indicate a difference of emissivities as a function of slag composition, further experiments must be performed to evaluate the emissivities of other characteristic slags at different temperatures in order to further assess the applicability of IR‐based systems for slag composition control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过实验确定炉渣发射率,利用红外系统加强炉渣控制
为了生产出高质量的钢材,在二次炼钢过程中对炉渣成分进行良好控制至关重要。然而,传统的炉渣分析方法包括取样、样品制备和分析,非常耗时。这项工作是研究基于红外(IR)系统的第一步,利用不同炉渣成分在红外波长范围内具有不同发射率的原理,可用于在线炉渣成分监测。因此,这项工作通过实验确定了炉渣在炼钢温度下作为成分函数的发射率值,因为炉渣的可用数据在文献中非常有限。在 1773 K 下,研究了属于 Al2O3-CaO-SiO2-MgO 体系的三种不同成分炉渣的发射率。所研究的发射率范围为 0.75-0.87,其中在 1773 K 下完全液态的炉渣重复性最好。尽管数据清楚地表明了发射率作为炉渣成分函数的差异,但为了进一步评估基于红外系统的炉渣成分控制的适用性,必须进行进一步的实验来评估其他特征炉渣在不同温度下的发射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
期刊最新文献
Masthead Cover Picture Contents: steel research int. 11/2024 Cover Picture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1