{"title":"A Physically Based Mean Field Model for Strain‐Induced Precipitation and Recrystallization in High‐Strength Low‐Alloy Steels","authors":"Maria‐Ioanna T. Tzini, Gregory N. Haidemenopoulos","doi":"10.1002/srin.202400493","DOIUrl":null,"url":null,"abstract":"A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400493","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A physically based mean field model developed to predict the microstructural evolution during the thermomechanical control process of X70 high‐strength low‐alloy (HSLA) steels is presented. The physically based mean field model incorporates a new integrated precipitation and recrystallization model developed to describe the interaction between strain‐induced precipitation of niobium and titanium carbonitrides and static recrystallization of austenite. The integrated model considers an effective Zener pinning force for the multimodal particle size distribution (PSD) of precipitates, an effective grain‐boundary mobility for the solute drag effect of niobium, and an inhomogeneous stored energy for austenite recrystallization. Given a processing route, the model predicts the variation of austenite grain size, recrystallized and precipitated fractions, and evolution of PSDs of precipitates. Model predictions reveal an excellent agreement with experimental grain size measurements and a final average ferrite grain size of 3.81 μm is achieved. The proposed model considers the heterogeneous nature of recrystallization and precipitation and can contribute to the process design of the HSLA and microalloyed steels.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming