Effect of silane coupling agent on mechanical properties, flame retardancy, and ceramifiable behavior of ceramifiable flame-retardant silicone rubber composite
Jun-Sheng Wang, Ke Shang, Hui-Jing Jiang, Peng-Ju Wang, Hai-Bo Zhu, Gui-De Lin, Xing Jin, Dan Liu, Bi Zhao, Jin-Jun Yang, Teng Fu
{"title":"Effect of silane coupling agent on mechanical properties, flame retardancy, and ceramifiable behavior of ceramifiable flame-retardant silicone rubber composite","authors":"Jun-Sheng Wang, Ke Shang, Hui-Jing Jiang, Peng-Ju Wang, Hai-Bo Zhu, Gui-De Lin, Xing Jin, Dan Liu, Bi Zhao, Jin-Jun Yang, Teng Fu","doi":"10.1002/fam.3240","DOIUrl":null,"url":null,"abstract":"<p>In order to improve the dispersibility of inorganic fillers and enhance its ceramifiable flame-retardant efficiency, the ceramifiable flame-retardant silicone rubber composites were prepared using glass powder, zinc borate, ammonium polyphosphate, mica powder, platinum catalyst as ceramifiable flame-retardant agent, and various silane coupling agents as interfacial modifier. The micromorphology, mechanical properties, flame retardancy, thermal stability, and combustion behavior of ceramifiable flame-retardant silicone rubber composites, as well as the flexural strength of the corresponding ceramics generated after pyrolysis of the composites were examined. The results reveal that the inclusion of silane coupling agents improves the dispersibility of ceramifiable flame-retardant agents substantially. The mechanical properties, flame retardancy, thermal stability, and combustion behavior of ceramifiable flame-retardant silicone rubber composites are all improved. When compared to a composite without a silane coupling agent, the tensile strength of the composite can be improved by up to 1.9 times. Only 0.5phr silane coupling agent is required to raise the vertical combustion rating from V-1 to V-0, and the composite with 3 phr KH570 has a LOI value of 38.6. Meanwhile, the heat release rate of the composite is reduced to a certain extent, and the time to ignition and residue are dramatically enhanced after the addition of silane coupling agent in the cone calorimetry test. Moreover, flexural strength of the corresponding ceramics generated after pyrolysis of the composites rapidly increases with increasing silane coupling agent content, which can reach to 24.7 MPa with addition of 3 phr KH570.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 8","pages":"858-867"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3240","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the dispersibility of inorganic fillers and enhance its ceramifiable flame-retardant efficiency, the ceramifiable flame-retardant silicone rubber composites were prepared using glass powder, zinc borate, ammonium polyphosphate, mica powder, platinum catalyst as ceramifiable flame-retardant agent, and various silane coupling agents as interfacial modifier. The micromorphology, mechanical properties, flame retardancy, thermal stability, and combustion behavior of ceramifiable flame-retardant silicone rubber composites, as well as the flexural strength of the corresponding ceramics generated after pyrolysis of the composites were examined. The results reveal that the inclusion of silane coupling agents improves the dispersibility of ceramifiable flame-retardant agents substantially. The mechanical properties, flame retardancy, thermal stability, and combustion behavior of ceramifiable flame-retardant silicone rubber composites are all improved. When compared to a composite without a silane coupling agent, the tensile strength of the composite can be improved by up to 1.9 times. Only 0.5phr silane coupling agent is required to raise the vertical combustion rating from V-1 to V-0, and the composite with 3 phr KH570 has a LOI value of 38.6. Meanwhile, the heat release rate of the composite is reduced to a certain extent, and the time to ignition and residue are dramatically enhanced after the addition of silane coupling agent in the cone calorimetry test. Moreover, flexural strength of the corresponding ceramics generated after pyrolysis of the composites rapidly increases with increasing silane coupling agent content, which can reach to 24.7 MPa with addition of 3 phr KH570.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.