{"title":"Laboratory variables‐based artificial neural network models for predicting fatty liver disease: A retrospective study","authors":"Panpan Lv, Zhen Cao, Zhengqi Zhu, Xiaoqin Xu, Zhen Zhao","doi":"10.1515/med-2024-1031","DOIUrl":null,"url":null,"abstract":"Background The efficacy of artificial neural network (ANN) models employing laboratory variables for predicting fatty liver disease (FLD) remains inadequately established. The study aimed to develop ANN models to precisely predict FLD. Methods Of 12,058 participants undergoing the initial FLD screening, 7,990 eligible participants were included. A total of 6,309 participants were divided randomly into the training (4,415 participants, 70%) and validation (1,894 participants, 30%) sets for developing prediction models. The performance of ANNs was additionally tested in the testing set (1,681 participants). The area under the receiver operating characteristic curve (AUROC) was employed to assess the models’ performance. Results The 18-variable, 11-variable, 3-variable, and 2-variable models each achieved robust FLD prediction performance, with AUROCs over 0.92, 0.91, and 0.89 in the training, validation, and testing, respectively. Although slightly inferior to the other three models in performance (AUROC ranges: 0.89–0.92 vs 0.91–0.95), the 2-variable model showed 80.3% accuracy and 89.7% positive predictive value in the testing. Incorporating age and gender increased the AUROCs of the resulting 20-variable, 13-variable, 5-variable, and 4-variable models each to over 0.93, 0.92, and 0.91 in the training, validation, and testing, respectively. Conclusions Implementation of the ANN models could effectively predict FLD, with enhanced predictive performance via the inclusion of age and gender.","PeriodicalId":19715,"journal":{"name":"Open Medicine","volume":"65 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/med-2024-1031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background The efficacy of artificial neural network (ANN) models employing laboratory variables for predicting fatty liver disease (FLD) remains inadequately established. The study aimed to develop ANN models to precisely predict FLD. Methods Of 12,058 participants undergoing the initial FLD screening, 7,990 eligible participants were included. A total of 6,309 participants were divided randomly into the training (4,415 participants, 70%) and validation (1,894 participants, 30%) sets for developing prediction models. The performance of ANNs was additionally tested in the testing set (1,681 participants). The area under the receiver operating characteristic curve (AUROC) was employed to assess the models’ performance. Results The 18-variable, 11-variable, 3-variable, and 2-variable models each achieved robust FLD prediction performance, with AUROCs over 0.92, 0.91, and 0.89 in the training, validation, and testing, respectively. Although slightly inferior to the other three models in performance (AUROC ranges: 0.89–0.92 vs 0.91–0.95), the 2-variable model showed 80.3% accuracy and 89.7% positive predictive value in the testing. Incorporating age and gender increased the AUROCs of the resulting 20-variable, 13-variable, 5-variable, and 4-variable models each to over 0.93, 0.92, and 0.91 in the training, validation, and testing, respectively. Conclusions Implementation of the ANN models could effectively predict FLD, with enhanced predictive performance via the inclusion of age and gender.
期刊介绍:
Open Medicine is an open access journal that provides users with free, instant, and continued access to all content worldwide. The primary goal of the journal has always been a focus on maintaining the high quality of its published content. Its mission is to facilitate the exchange of ideas between medical science researchers from different countries. Papers connected to all fields of medicine and public health are welcomed. Open Medicine accepts submissions of research articles, reviews, case reports, letters to editor and book reviews.