ArticulatePro: A Comparative Study on a Proactive and Non-Proactive Assistant in a Climate Data Exploration Task

Roderick Tabalba, Christopher J. Lee, Giorgio Tran, Nurit Kirshenbaum, Jason Leigh
{"title":"ArticulatePro: A Comparative Study on a Proactive and Non-Proactive Assistant in a Climate Data Exploration Task","authors":"Roderick Tabalba, Christopher J. Lee, Giorgio Tran, Nurit Kirshenbaum, Jason Leigh","doi":"arxiv-2409.10797","DOIUrl":null,"url":null,"abstract":"Recent advances in Natural Language Interfaces (NLIs) and Large Language\nModels (LLMs) have transformed our approach to NLP tasks, allowing us to focus\nmore on a Pragmatics-based approach. This shift enables more natural\ninteractions between humans and voice assistants, which have been challenging\nto achieve. Pragmatics describes how users often talk out of turn, interrupt\neach other, or provide relevant information without being explicitly asked\n(maxim of quantity). To explore this, we developed a digital assistant that\nconstantly listens to conversations and proactively generates relevant\nvisualizations during data exploration tasks. In a within-subject study,\nparticipants interacted with both proactive and non-proactive versions of a\nvoice assistant while exploring the Hawaii Climate Data Portal (HCDP). Results\nsuggest that the proactive assistant enhanced user engagement and facilitated\nquicker insights. Our study highlights the potential of Pragmatic, proactive AI\nin NLIs and identifies key challenges in its implementation, offering insights\nfor future research.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Natural Language Interfaces (NLIs) and Large Language Models (LLMs) have transformed our approach to NLP tasks, allowing us to focus more on a Pragmatics-based approach. This shift enables more natural interactions between humans and voice assistants, which have been challenging to achieve. Pragmatics describes how users often talk out of turn, interrupt each other, or provide relevant information without being explicitly asked (maxim of quantity). To explore this, we developed a digital assistant that constantly listens to conversations and proactively generates relevant visualizations during data exploration tasks. In a within-subject study, participants interacted with both proactive and non-proactive versions of a voice assistant while exploring the Hawaii Climate Data Portal (HCDP). Results suggest that the proactive assistant enhanced user engagement and facilitated quicker insights. Our study highlights the potential of Pragmatic, proactive AI in NLIs and identifies key challenges in its implementation, offering insights for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ArticulatePro:气候数据探索任务中主动和非主动助手的比较研究
自然语言界面(NLIs)和大型语言模型(LLMs)的最新进展改变了我们处理 NLP 任务的方法,使我们能够更加专注于基于语用学的方法。这一转变使人类与语音助手之间的交互更加自然,而实现这一点一直是个挑战。语用学描述了用户是如何在没有被明确询问的情况下,经常不按常理出牌、打断他人讲话或提供相关信息的(数量格言)。为了探讨这个问题,我们开发了一款数字助手,它能持续倾听对话,并在数据探索任务中主动生成相关的可视化信息。在一项主体内研究中,参与者在探索夏威夷气候数据门户网站(HCDP)时与主动和非主动版本的语音助手进行了互动。结果表明,主动语音助手提高了用户的参与度,并有助于用户更快地获得见解。我们的研究强调了实用、主动型人工智能在国家语言实验室中的潜力,并指出了其实施过程中的关键挑战,为未来的研究提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1