Precise Tool to Target Positioning Widgets (TOTTA) in Spatial Environments: A Systematic Review

Mine Dastan, Michele Fiorentino, Antonio E. Uva
{"title":"Precise Tool to Target Positioning Widgets (TOTTA) in Spatial Environments: A Systematic Review","authors":"Mine Dastan, Michele Fiorentino, Antonio E. Uva","doi":"arxiv-2409.10239","DOIUrl":null,"url":null,"abstract":"TOTTA outlines the spatial position and rotation guidance of a real/virtual\ntool (TO) towards a real/virtual target (TA), which is a key task in Mixed\nReality applications. The task error can have critical consequences regarding\nsafety, performance, and quality, such as in surgical implantology or\nindustrial maintenance scenarios. The TOTTA problem lacks a dedicated study and\nis scattered across different domains with isolated designs. This work\ncontributes to a systematic review of the TOTTA visual widgets, studying 70\nunique designs from 24 papers. TOTTA is commonly guided by visual overlap an\nintuitive, pre-attentive 'collimation' feedback of simple-shaped widgets: Box,\n3D Axes, 3D Model, 2D Crosshair, Globe, Tetrahedron, Line, and Plane. Our\nresearch discovers that TO and TA are often represented with the same shape.\nThey are distinguished by topological elements (e.g., edges, vertices, faces),\ncolors, transparency levels, and added shapes, widget quantity, and size.\nMeanwhile, some designs provide continuous 'during manipulation feedback'\nrelative to the distance between TO and TA by text, dynamic color,\nsonification, and amplified graphical visualization. Some approaches trigger\ndiscrete 'TA reached feedback,' such as color alteration, added sound, TA shape\nchange, and added text. We found a lack of golden standards, including in\ntesting procedures, as current ones are limited to partial sets with different\nand incomparable setups (different target configurations, avatar, background,\netc.). We also found a bias in participants: right-handed, young male,\nnon-color impaired.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

TOTTA outlines the spatial position and rotation guidance of a real/virtual tool (TO) towards a real/virtual target (TA), which is a key task in Mixed Reality applications. The task error can have critical consequences regarding safety, performance, and quality, such as in surgical implantology or industrial maintenance scenarios. The TOTTA problem lacks a dedicated study and is scattered across different domains with isolated designs. This work contributes to a systematic review of the TOTTA visual widgets, studying 70 unique designs from 24 papers. TOTTA is commonly guided by visual overlap an intuitive, pre-attentive 'collimation' feedback of simple-shaped widgets: Box, 3D Axes, 3D Model, 2D Crosshair, Globe, Tetrahedron, Line, and Plane. Our research discovers that TO and TA are often represented with the same shape. They are distinguished by topological elements (e.g., edges, vertices, faces), colors, transparency levels, and added shapes, widget quantity, and size. Meanwhile, some designs provide continuous 'during manipulation feedback' relative to the distance between TO and TA by text, dynamic color, sonification, and amplified graphical visualization. Some approaches trigger discrete 'TA reached feedback,' such as color alteration, added sound, TA shape change, and added text. We found a lack of golden standards, including in testing procedures, as current ones are limited to partial sets with different and incomparable setups (different target configurations, avatar, background, etc.). We also found a bias in participants: right-handed, young male, non-color impaired.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间环境中目标定位小部件的精确工具 (TOTTA):系统回顾
TOTTA概述了真实/虚拟工具(TO)对真实/虚拟目标(TA)的空间位置和旋转引导,这是混合现实应用中的一项关键任务。任务错误会对安全、性能和质量造成严重后果,例如在外科植入手术或工业维护场景中。TOTTA 问题缺乏专门的研究,而且分散在不同的领域,设计孤立。本研究对 TOTTA 视觉小部件进行了系统回顾,研究了 24 篇论文中的 70 个独特设计。TOTTA通常由简单形状小部件的视觉重叠、直觉、预注意力 "准直 "反馈所引导:这些小部件包括:方框、三维轴线、三维模型、二维十字线、地球仪、四面体、线条和平面。我们的研究发现,"TO "和 "TA "通常用相同的形状来表示,它们通过拓扑元素(如边、顶点、面)、颜色、透明度级别以及添加的形状、小部件数量和大小来区分。同时,一些设计通过文字、动态颜色、声音和放大的图形可视化等方式,在 "TO "和 "TA "之间的距离上提供连续的 "操作过程反馈"。有些方法会触发离散的 "TA 到达反馈",如颜色改变、声音增加、TA 形状改变和文字增加。我们发现缺乏黄金标准,包括令人感兴趣的程序,因为目前的标准仅限于具有不同且不可比较的设置(不同的目标配置、头像、背景等)的部分集合。我们还发现了参与者的偏见:右撇子、年轻男性、非色觉障碍者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1