AI as Extraherics: Fostering Higher-order Thinking Skills in Human-AI Interaction

Koji Yatani, Zefan Sramek, Chi-lan Yang
{"title":"AI as Extraherics: Fostering Higher-order Thinking Skills in Human-AI Interaction","authors":"Koji Yatani, Zefan Sramek, Chi-lan Yang","doi":"arxiv-2409.09218","DOIUrl":null,"url":null,"abstract":"As artificial intelligence (AI) technologies, including generative AI,\ncontinue to evolve, concerns have arisen about over-reliance on AI, which may\nlead to human deskilling and diminished cognitive engagement. Over-reliance on\nAI can also lead users to accept information given by AI without performing\ncritical examinations, causing negative consequences, such as misleading users\nwith hallucinated contents. This paper introduces extraheric AI, a human-AI\ninteraction conceptual framework that fosters users' higher-order thinking\nskills, such as creativity, critical thinking, and problem-solving, during task\ncompletion. Unlike existing human-AI interaction designs, which replace or\naugment human cognition, extraheric AI fosters cognitive engagement by posing\nquestions or providing alternative perspectives to users, rather than direct\nanswers. We discuss interaction strategies, evaluation methods aligned with\ncognitive load theory and Bloom's taxonomy, and future research directions to\nensure that human cognitive skills remain a crucial element in AI-integrated\nenvironments, promoting a balanced partnership between humans and AI.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As artificial intelligence (AI) technologies, including generative AI, continue to evolve, concerns have arisen about over-reliance on AI, which may lead to human deskilling and diminished cognitive engagement. Over-reliance on AI can also lead users to accept information given by AI without performing critical examinations, causing negative consequences, such as misleading users with hallucinated contents. This paper introduces extraheric AI, a human-AI interaction conceptual framework that fosters users' higher-order thinking skills, such as creativity, critical thinking, and problem-solving, during task completion. Unlike existing human-AI interaction designs, which replace or augment human cognition, extraheric AI fosters cognitive engagement by posing questions or providing alternative perspectives to users, rather than direct answers. We discuss interaction strategies, evaluation methods aligned with cognitive load theory and Bloom's taxonomy, and future research directions to ensure that human cognitive skills remain a crucial element in AI-integrated environments, promoting a balanced partnership between humans and AI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI as Extraherics:在人机交互中培养高阶思维能力
随着人工智能(AI)技术(包括生成式人工智能)的不断发展,人们对过度依赖人工智能产生了担忧,因为这可能会导致人类工作枯竭和认知参与度降低。过度依赖人工智能还可能导致用户在没有进行严格审查的情况下接受人工智能提供的信息,从而造成负面影响,例如用幻觉内容误导用户。本文介绍了 "额外的人工智能"(extheric AI)这一人机交互概念框架,它能在完成任务的过程中培养用户的高阶思维能力,如创造力、批判性思维和解决问题的能力。现有的人机交互设计取代或强化了人的认知,与之不同的是,额外的人工智能通过向用户提出问题或提供其他观点,而不是直接回答,来促进用户的认知参与。我们讨论了交互策略、符合认知负荷理论和布鲁姆分类法的评估方法以及未来的研究方向,以确保人类的认知技能仍然是人工智能集成环境中的关键因素,促进人类与人工智能之间的平衡合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1