Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system

Shailja Gupta, Rajesh Ranjan, Surya Narayan Singh
{"title":"Comprehensive Study on Sentiment Analysis: From Rule-based to modern LLM based system","authors":"Shailja Gupta, Rajesh Ranjan, Surya Narayan Singh","doi":"arxiv-2409.09989","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive survey of sentiment analysis within the\ncontext of artificial intelligence (AI) and large language models (LLMs).\nSentiment analysis, a critical aspect of natural language processing (NLP), has\nevolved significantly from traditional rule-based methods to advanced deep\nlearning techniques. This study examines the historical development of\nsentiment analysis, highlighting the transition from lexicon-based and\npattern-based approaches to more sophisticated machine learning and deep\nlearning models. Key challenges are discussed, including handling bilingual\ntexts, detecting sarcasm, and addressing biases. The paper reviews\nstate-of-the-art approaches, identifies emerging trends, and outlines future\nresearch directions to advance the field. By synthesizing current methodologies\nand exploring future opportunities, this survey aims to understand sentiment\nanalysis in the AI and LLM context thoroughly.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"208 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive survey of sentiment analysis within the context of artificial intelligence (AI) and large language models (LLMs). Sentiment analysis, a critical aspect of natural language processing (NLP), has evolved significantly from traditional rule-based methods to advanced deep learning techniques. This study examines the historical development of sentiment analysis, highlighting the transition from lexicon-based and pattern-based approaches to more sophisticated machine learning and deep learning models. Key challenges are discussed, including handling bilingual texts, detecting sarcasm, and addressing biases. The paper reviews state-of-the-art approaches, identifies emerging trends, and outlines future research directions to advance the field. By synthesizing current methodologies and exploring future opportunities, this survey aims to understand sentiment analysis in the AI and LLM context thoroughly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情感分析综合研究:从基于规则的系统到基于 LLM 的现代系统
情感分析是自然语言处理(NLP)的一个重要方面,从传统的基于规则的方法到先进的深度学习技术,情感分析有了长足的发展。本研究考察了情感分析的历史发展,重点介绍了从基于词典和模式的方法到更复杂的机器学习和深度学习模型的过渡。本文讨论了关键挑战,包括处理双语文本、检测讽刺和解决偏见等。论文回顾了最先进的方法,指出了新兴趋势,并概述了推动该领域发展的未来研究方向。通过综合当前的方法和探索未来的机会,本调查旨在深入了解人工智能和 LLM 背景下的情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1