Modeling Rational Adaptation of Visual Search to Hierarchical Structures

Saku Sourulahti, Christian P Janssen, Jussi PP Jokinen
{"title":"Modeling Rational Adaptation of Visual Search to Hierarchical Structures","authors":"Saku Sourulahti, Christian P Janssen, Jussi PP Jokinen","doi":"arxiv-2409.08967","DOIUrl":null,"url":null,"abstract":"Efficient attention deployment in visual search is limited by human visual\nmemory, yet this limitation can be offset by exploiting the environment's\nstructure. This paper introduces a computational cognitive model that simulates\nhow the human visual system uses visual hierarchies to prevent refixations in\nsequential attention deployment. The model adopts computational rationality,\npositing behaviors as adaptations to cognitive constraints and environmental\nstructures. In contrast to earlier models that predict search performance for\nhierarchical information, our model does not include predefined assumptions\nabout particular search strategies. Instead, our model's search strategy\nemerges as a result of adapting to the environment through reinforcement\nlearning algorithms. In an experiment with human participants we test the\nmodel's prediction that structured environments reduce visual search times\ncompared to random tasks. Our model's predictions correspond well with human\nsearch performance across various set sizes for both structured and\nunstructured visual layouts. Our work improves understanding of the adaptive\nnature of visual search in hierarchically structured environments and informs\nthe design of optimized search spaces.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient attention deployment in visual search is limited by human visual memory, yet this limitation can be offset by exploiting the environment's structure. This paper introduces a computational cognitive model that simulates how the human visual system uses visual hierarchies to prevent refixations in sequential attention deployment. The model adopts computational rationality, positing behaviors as adaptations to cognitive constraints and environmental structures. In contrast to earlier models that predict search performance for hierarchical information, our model does not include predefined assumptions about particular search strategies. Instead, our model's search strategy emerges as a result of adapting to the environment through reinforcement learning algorithms. In an experiment with human participants we test the model's prediction that structured environments reduce visual search times compared to random tasks. Our model's predictions correspond well with human search performance across various set sizes for both structured and unstructured visual layouts. Our work improves understanding of the adaptive nature of visual search in hierarchically structured environments and informs the design of optimized search spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟视觉搜索对层次结构的合理适应
在视觉搜索中,高效的注意力调配受到人类视觉记忆的限制,然而这种限制可以通过利用环境结构来抵消。本文介绍了一种计算认知模型,该模型模拟了人类视觉系统如何利用视觉层次结构来防止在随后的注意力部署中出现混淆。该模型采用计算理性,将行为假设为对认知约束和环境结构的适应。与早期预测分层信息搜索性能的模型不同,我们的模型不包含关于特定搜索策略的预定义假设。相反,我们模型的搜索策略是通过强化学习算法来适应环境的结果。在一项以人类参与者为对象的实验中,我们验证了模型的预测,即与随机任务相比,结构化环境能缩短视觉搜索时间。我们的模型预测结果与人类在不同大小的集合中对结构化和非结构化视觉布局的搜索表现非常吻合。我们的工作加深了人们对分层结构环境中视觉搜索适应性的理解,并为优化搜索空间的设计提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1