Emerging Reliance Behaviors in Human-AI Text Generation: Hallucinations, Data Quality Assessment, and Cognitive Forcing Functions

Zahra Ashktorab, Qian Pan, Werner Geyer, Michael Desmond, Marina Danilevsky, James M. Johnson, Casey Dugan, Michelle Bachman
{"title":"Emerging Reliance Behaviors in Human-AI Text Generation: Hallucinations, Data Quality Assessment, and Cognitive Forcing Functions","authors":"Zahra Ashktorab, Qian Pan, Werner Geyer, Michael Desmond, Marina Danilevsky, James M. Johnson, Casey Dugan, Michelle Bachman","doi":"arxiv-2409.08937","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the impact of hallucinations and cognitive\nforcing functions in human-AI collaborative text generation tasks, focusing on\nthe use of Large Language Models (LLMs) to assist in generating high-quality\nconversational data. LLMs require data for fine-tuning, a crucial step in\nenhancing their performance. In the context of conversational customer support,\nthe data takes the form of a conversation between a human customer and an agent\nand can be generated with an AI assistant. In our inquiry, involving 11 users\nwho each completed 8 tasks, resulting in a total of 88 tasks, we found that the\npresence of hallucinations negatively impacts the quality of data. We also find\nthat, although the cognitive forcing function does not always mitigate the\ndetrimental effects of hallucinations on data quality, the presence of\ncognitive forcing functions and hallucinations together impacts data quality\nand influences how users leverage the AI responses presented to them. Our\nanalysis of user behavior reveals distinct patterns of reliance on AI-generated\nresponses, highlighting the importance of managing hallucinations in\nAI-generated content within conversational AI contexts.","PeriodicalId":501541,"journal":{"name":"arXiv - CS - Human-Computer Interaction","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the impact of hallucinations and cognitive forcing functions in human-AI collaborative text generation tasks, focusing on the use of Large Language Models (LLMs) to assist in generating high-quality conversational data. LLMs require data for fine-tuning, a crucial step in enhancing their performance. In the context of conversational customer support, the data takes the form of a conversation between a human customer and an agent and can be generated with an AI assistant. In our inquiry, involving 11 users who each completed 8 tasks, resulting in a total of 88 tasks, we found that the presence of hallucinations negatively impacts the quality of data. We also find that, although the cognitive forcing function does not always mitigate the detrimental effects of hallucinations on data quality, the presence of cognitive forcing functions and hallucinations together impacts data quality and influences how users leverage the AI responses presented to them. Our analysis of user behavior reveals distinct patterns of reliance on AI-generated responses, highlighting the importance of managing hallucinations in AI-generated content within conversational AI contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类-人工智能文本生成中新出现的依赖行为:幻觉、数据质量评估和认知强迫功能
在本文中,我们研究了幻觉和认知强化功能在人类-人工智能协作文本生成任务中的影响,重点是使用大型语言模型(LLM)来协助生成高质量的对话数据。大型语言模型需要数据进行微调,这是提高其性能的关键一步。在对话式客户支持中,数据的形式可以是人类客户与代理之间的对话,也可以通过人工智能助手生成。在我们的调查中,11 名用户每人完成了 8 项任务,共 88 项任务,我们发现幻觉的存在对数据质量产生了负面影响。我们还发现,虽然认知强迫功能并不总能减轻幻觉对数据质量的不利影响,但认知强迫功能和幻觉的共同存在会影响数据质量,并影响用户如何利用呈现给他们的人工智能响应。我们对用户行为的分析揭示了用户依赖人工智能生成回复的独特模式,突出了在人工智能对话语境中管理人工智能生成内容中幻觉的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Equimetrics -- Applying HAR principles to equestrian activities AI paintings vs. Human Paintings? Deciphering Public Interactions and Perceptions towards AI-Generated Paintings on TikTok From Data Stories to Dialogues: A Randomised Controlled Trial of Generative AI Agents and Data Storytelling in Enhancing Data Visualisation Comprehension Exploring Gaze Pattern in Autistic Children: Clustering, Visualization, and Prediction Revealing the Challenge of Detecting Character Knowledge Errors in LLM Role-Playing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1