Nonlinear sliding mode predictive trajectory tracking control of underactuated marine vehicles: Theory and experiment

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-09-18 DOI:10.1002/rnc.7638
Run‐Zhi Wang, Li‐Ying Hao, Zhi‐Jie Wu
{"title":"Nonlinear sliding mode predictive trajectory tracking control of underactuated marine vehicles: Theory and experiment","authors":"Run‐Zhi Wang, Li‐Ying Hao, Zhi‐Jie Wu","doi":"10.1002/rnc.7638","DOIUrl":null,"url":null,"abstract":"This article introduces a control method for trajectory tracking of underactuated unmanned marine vehicles (UMVs), employing the sliding mode predictive control (SMPC) scheme. To address the challenges of demonstrating system stability with a local feedback controller for underactuated UMVs in model predictive control (MPC), this article proposes an auxiliary controller design method based on sliding mode control. A sliding mode dynamic is derived through an error system and sliding surface equations. Compared to existing literature, which predominantly emphasizes demonstrating input‐state stability, this strategy ensures the asymptotic stability of the closed‐loop system by introducing a novel method for selecting weight matrices. Furthermore, extended terminal sets and feasible sets constructed via sliding variables are provided, thereby reducing conservatism. Ultimately, the SMPC scheme is validated through simulation and hardware experiments providing quantitative evidence of its effectiveness in real‐world applications.","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"45 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rnc.7638","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a control method for trajectory tracking of underactuated unmanned marine vehicles (UMVs), employing the sliding mode predictive control (SMPC) scheme. To address the challenges of demonstrating system stability with a local feedback controller for underactuated UMVs in model predictive control (MPC), this article proposes an auxiliary controller design method based on sliding mode control. A sliding mode dynamic is derived through an error system and sliding surface equations. Compared to existing literature, which predominantly emphasizes demonstrating input‐state stability, this strategy ensures the asymptotic stability of the closed‐loop system by introducing a novel method for selecting weight matrices. Furthermore, extended terminal sets and feasible sets constructed via sliding variables are provided, thereby reducing conservatism. Ultimately, the SMPC scheme is validated through simulation and hardware experiments providing quantitative evidence of its effectiveness in real‐world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欠驱动海洋车辆的非线性滑模预测轨迹跟踪控制:理论与实验
本文介绍了一种采用滑模预测控制(SMPC)方案的控制方法,用于对欠动无人海洋航行器(UMV)进行轨迹跟踪。为了解决在模型预测控制(MPC)中使用局部反馈控制器来证明系统稳定性的难题,本文提出了一种基于滑模控制的辅助控制器设计方法。通过误差系统和滑动面方程推导出滑动模态动态。与主要强调证明输入状态稳定性的现有文献相比,该策略通过引入一种新的权重矩阵选择方法来确保闭环系统的渐近稳定性。此外,还提供了扩展的终端集和通过滑动变量构建的可行集,从而减少了保守性。最后,SMPC 方案通过仿真和硬件实验进行了验证,为其在实际应用中的有效性提供了量化证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Disturbance observer based adaptive predefined-time sliding mode control for robot manipulators with uncertainties and disturbances Issue Information Issue Information A stabilizing reinforcement learning approach for sampled systems with partially unknown models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1