Ali Abdallah, Eric Vincens, Hélène Magoariec, Mohsen Ardabilian, Christophe Picault
{"title":"Effect of particle shape on the void space in granular materials: implications for the properties of granular filters","authors":"Ali Abdallah, Eric Vincens, Hélène Magoariec, Mohsen Ardabilian, Christophe Picault","doi":"10.1007/s10035-024-01452-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01452-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the influence of particle shape on the void space morphology and topology in granular materials. Numerical samples with spherical and ellipsoidal particle shapes were generated using the discrete element method. A segmentation algorithm was used to extract the pore space characteristics. The results reveal that particle shape significantly affects both constriction and pore sizes, with distinctive features according to flatness index or elongation ratio, the former being more significant than the latter. The obtained results were validated by conducting numerical filtration tests, which illustrated a direct correlation between the constriction properties derived from the pore space extraction and the blockage rate of fine particles in the filtration tests. The study revealed the importance of considering particle shape in filter design, emphasising its significant impact on pore space characteristics and filtration performance.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.