Development of a Root-Zone Temperature Control System Using Air Source Heat Pump and Its Impact on the Growth and Yield of Paprika

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-13 DOI:10.1093/aobpla/plae047
Jeesang Myung, Meiyan Cui, Byungkwan Lee, Hyein Lee, Jaewook Shin, Changhoo Chun
{"title":"Development of a Root-Zone Temperature Control System Using Air Source Heat Pump and Its Impact on the Growth and Yield of Paprika","authors":"Jeesang Myung, Meiyan Cui, Byungkwan Lee, Hyein Lee, Jaewook Shin, Changhoo Chun","doi":"10.1093/aobpla/plae047","DOIUrl":null,"url":null,"abstract":"By developing and implementing a local temperature control system, such as a root zone, with a high energy efficiency heat source, we can ensure both yield and energy efficiency against extreme temperatures. This system, designed with practicality in mind, has a remarkably positive impact on paprika plants' growth and yield in greenhouse cultivation. In the summer season, paprika plants were grown with no cooling (NC), nutrient solution cooling (NSC), and the combination of NSC and substrate surround cooling (NSC+SSC). In the case of SSC, cooled water circulated through the pipe surrounding the substrate to lower the substrate temperature. The cooling system maintains the nutrient solution temperature at 18oC and the circulating water temperature at the system in the winter season; the paprika plants were grown with no heating (NH), nutrient solution heating (NSH), and the combination of NSH and substrate surround heating (NSH+SSH). The heating system maintains the nutrient solution temperature at 25oC and the circulating water temperature at 30oC. In the summer, the root fresh and dry weights, stem fresh and dry weights, stem length, and node number were increased in the NSC+SSC. In the winter season, the stem fresh and dry weights, leaf area, and leaf fresh and dry weights were increased in the NSH+SSH. In both seasons, root-zone temperature control increased the fruit quality and yield. The result indicates that this easy-to-install root-zone temperature control system can be applied to the commercial greenhouse to secure paprika growth and yield in year-round cultivation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

By developing and implementing a local temperature control system, such as a root zone, with a high energy efficiency heat source, we can ensure both yield and energy efficiency against extreme temperatures. This system, designed with practicality in mind, has a remarkably positive impact on paprika plants' growth and yield in greenhouse cultivation. In the summer season, paprika plants were grown with no cooling (NC), nutrient solution cooling (NSC), and the combination of NSC and substrate surround cooling (NSC+SSC). In the case of SSC, cooled water circulated through the pipe surrounding the substrate to lower the substrate temperature. The cooling system maintains the nutrient solution temperature at 18oC and the circulating water temperature at the system in the winter season; the paprika plants were grown with no heating (NH), nutrient solution heating (NSH), and the combination of NSH and substrate surround heating (NSH+SSH). The heating system maintains the nutrient solution temperature at 25oC and the circulating water temperature at 30oC. In the summer, the root fresh and dry weights, stem fresh and dry weights, stem length, and node number were increased in the NSC+SSC. In the winter season, the stem fresh and dry weights, leaf area, and leaf fresh and dry weights were increased in the NSH+SSH. In both seasons, root-zone temperature control increased the fruit quality and yield. The result indicates that this easy-to-install root-zone temperature control system can be applied to the commercial greenhouse to secure paprika growth and yield in year-round cultivation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空气源热泵开发根区温度控制系统及其对辣椒生长和产量的影响
通过开发和实施具有高能效热源的局部温度控制系统(例如根区),我们可以在极端温度下确保产量和能效。这一系统的设计考虑到了实用性,对温室栽培中红辣椒植株的生长和产量产生了显著的积极影响。在夏季,采用不降温(NC)、营养液降温(NSC)以及营养液降温与基质环绕降温相结合(NSC+SSC)的方式栽培红辣椒植株。在 SSC 的情况下,冷却水通过基质周围的管道循环,以降低基质温度。在冬季,冷却系统将营养液温度保持在 18 摄氏度,循环水温度保持在系统温度;在不加热(NH)、营养液加热(NSH)以及 NSH 和基质环绕加热相结合(NSH+SSH)的情况下种植辣椒。加热系统将营养液温度保持在 25 摄氏度,循环水温度保持在 30 摄氏度。在夏季,NSC+SSC 的根鲜重和干重、茎鲜重和干重、茎长和节数都有所增加。在冬季,NSH+SSH 增加了茎的鲜重和干重、叶面积和叶片的鲜重和干重。在这两个季节,根区温度控制都提高了果实质量和产量。结果表明,这种易于安装的根区温度控制系统可应用于商业温室,以确保辣椒在全年栽培中的生长和产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1