I. S. Mashkovsky, P. V. Markov, G. N. Baeva, N. S. Smirnova, A. E. Vaulina, D. P. Mel’nikov, A. Yu. Stakheev
{"title":"Properties of PdAg/Al2O3 Egg–Shell Single-Atom Catalysts in Front-End Hydrogenation of Acetylene","authors":"I. S. Mashkovsky, P. V. Markov, G. N. Baeva, N. S. Smirnova, A. E. Vaulina, D. P. Mel’nikov, A. Yu. Stakheev","doi":"10.1134/s0965544124050165","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Two samples of PdAg/Al<sub>2</sub>O<sub>3</sub> egg–shell single-atom catalysts, with Ag/Pd ratios of 1 : 1 and 3 : 1, were synthesized and characterized by TEM, XPS, and DRIFTS-CO methods. The formation of bimetallic PdAg alloy nanoparticles with single-atom Pd<sub>1</sub> active sites was demonstrated. Furthermore, a physicochemical characterization showed a egg–shell distribution of the active component. The catalytic performance of the samples was tested in front-end selective hydrogenation of acetylene. The H<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> ratio in the model mixture was varied from 20 to 60. Under front-end acetylene hydrogenation conditions, the highest ethylene selectivity (about 87 at 90% acetylene conversion) was achieved in the presence of the Pd<sub>1</sub>Ag<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst at H<sub>2</sub>/C<sub>2</sub>H<sub>2</sub> = 20. Finally, it was shown that, unlike the monometallic Pd catalyst, the Ag-promoted catalysts were completely free of any local thermal runaway effect.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0965544124050165","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two samples of PdAg/Al2O3 egg–shell single-atom catalysts, with Ag/Pd ratios of 1 : 1 and 3 : 1, were synthesized and characterized by TEM, XPS, and DRIFTS-CO methods. The formation of bimetallic PdAg alloy nanoparticles with single-atom Pd1 active sites was demonstrated. Furthermore, a physicochemical characterization showed a egg–shell distribution of the active component. The catalytic performance of the samples was tested in front-end selective hydrogenation of acetylene. The H2/C2H2 ratio in the model mixture was varied from 20 to 60. Under front-end acetylene hydrogenation conditions, the highest ethylene selectivity (about 87 at 90% acetylene conversion) was achieved in the presence of the Pd1Ag3/Al2O3 catalyst at H2/C2H2 = 20. Finally, it was shown that, unlike the monometallic Pd catalyst, the Ag-promoted catalysts were completely free of any local thermal runaway effect.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.