Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation

IF 2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of the Electron Devices Society Pub Date : 2024-09-17 DOI:10.1109/JEDS.2024.3462590
Wei-Cheng Wang;Ming-Dou Ker
{"title":"Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation","authors":"Wei-Cheng Wang;Ming-Dou Ker","doi":"10.1109/JEDS.2024.3462590","DOIUrl":null,"url":null,"abstract":"When more circuit functions are integrated into a single chip fabricated by the GaN-on-Silicon process, the need for on-chip electrostatic discharge (ESD) protection design becomes crucial to safeguard GaN integrated circuits (ICs). In this work, the power-rail ESD clamp circuit with gate-coupled design, fabricated in a GaN-on-Silicon process, was investigated. By increasing the gate-coupled capacitance, ESD level of the power-rail ESD clamp circuit can be significantly improved. However, the increased capacitance induces transient leakage current during normal power-on operation. To overcome this issue, a new detection circuit was proposed, which can differentiate between the ESD event and the normal power-on transient operation. Therefore, incorporating this new proposed detection circuit with the gate-coupled design allows for good ESD robustness, while also preventing transient leakage current during normal power-on condition.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681588","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681588/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

When more circuit functions are integrated into a single chip fabricated by the GaN-on-Silicon process, the need for on-chip electrostatic discharge (ESD) protection design becomes crucial to safeguard GaN integrated circuits (ICs). In this work, the power-rail ESD clamp circuit with gate-coupled design, fabricated in a GaN-on-Silicon process, was investigated. By increasing the gate-coupled capacitance, ESD level of the power-rail ESD clamp circuit can be significantly improved. However, the increased capacitance induces transient leakage current during normal power-on operation. To overcome this issue, a new detection circuit was proposed, which can differentiate between the ESD event and the normal power-on transient operation. Therefore, incorporating this new proposed detection circuit with the gate-coupled design allows for good ESD robustness, while also preventing transient leakage current during normal power-on condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
完全集成的硅基氮化镓(GaN)电源轨静电放电钳位电路在正常上电操作期间不会产生瞬态泄漏电流
当硅基氮化镓工艺制造的单个芯片中集成了更多电路功能时,片上静电放电(ESD)保护设计对于保护氮化镓集成电路(IC)变得至关重要。在这项工作中,研究了采用硅基氮化镓工艺制造的、具有栅极耦合设计的电源轨静电放电箝位电路。通过增加栅极耦合电容,电源轨 ESD 夹钳电路的 ESD 电平可得到显著提高。然而,增加的电容会在正常上电操作期间产生瞬态漏电流。为了克服这一问题,我们提出了一种新的检测电路,它可以区分 ESD 事件和正常上电瞬态操作。因此,将这一新的检测电路与栅极耦合设计结合在一起,既能实现良好的 ESD 鲁棒性,又能防止正常通电条件下的瞬态漏电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
期刊最新文献
Kr-Plasma Process for Conductance Control of MFSFET With FeND-HfO2 Gate Insulator Fully Integrated GaN-on-Silicon Power-Rail ESD Clamp Circuit Without Transient Leakage Current During Normal Power-on Operation Combining Intelligence With Rules for Device Modeling: Approximating the Behavior of AlGaN/GaN HEMTs Using a Hybrid Neural Network and Fuzzy Logic Inference System Impact of Strain on Sub-3 nm Gate-all-Around CMOS Logic Circuit Performance Using a Neural Compact Modeling Approach A Novel Parallel In-Memory Logic Array Based on Programmable Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1