Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot

Ning Wang, Shao-Min Wang, Run-Ze Zhang, Jia-Min Kang, Wen-Long Lu, Hai-Ou Li, Gang Cao, Bao-Chuan Wang, Guo-Ping Guo
{"title":"Pursuing high-fidelity control of spin qubits in natural Si/SiGe quantum dot","authors":"Ning Wang, Shao-Min Wang, Run-Ze Zhang, Jia-Min Kang, Wen-Long Lu, Hai-Ou Li, Gang Cao, Bao-Chuan Wang, Guo-Ping Guo","doi":"arxiv-2409.09747","DOIUrl":null,"url":null,"abstract":"Electron spin qubits in silicon are a promising platform for fault-tolerant\nquantum computing. Low-frequency noise, including nuclear spin fluctuations and\ncharge noise, is a primary factor limiting gate fidelities. Suppressing this\nnoise is crucial for high-fidelity qubit operations. Here, we report on a\ntwo-qubit quantum device in natural silicon with universal qubit control,\ndesigned to investigate the upper limits of gate fidelities in a non-purified\nSi/SiGe quantum dot device. By employing advanced device structures, qubit\nmanipulation techniques, and optimization methods, we have achieved\nsingle-qubit gate fidelities exceeding 99% and a two-qubit Controlled-Z (CZ)\ngate fidelity of 91%. Decoupled CZ gates are used to prepare Bell states with a\nfidelity of 91%, typically exceeding previously reported values in natural\nsilicon devices. These results underscore that even natural silicon has the\npotential to achieve high-fidelity gate operations, particularly with further\noptimization methods to suppress low-frequency noise.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electron spin qubits in silicon are a promising platform for fault-tolerant quantum computing. Low-frequency noise, including nuclear spin fluctuations and charge noise, is a primary factor limiting gate fidelities. Suppressing this noise is crucial for high-fidelity qubit operations. Here, we report on a two-qubit quantum device in natural silicon with universal qubit control, designed to investigate the upper limits of gate fidelities in a non-purified Si/SiGe quantum dot device. By employing advanced device structures, qubit manipulation techniques, and optimization methods, we have achieved single-qubit gate fidelities exceeding 99% and a two-qubit Controlled-Z (CZ) gate fidelity of 91%. Decoupled CZ gates are used to prepare Bell states with a fidelity of 91%, typically exceeding previously reported values in natural silicon devices. These results underscore that even natural silicon has the potential to achieve high-fidelity gate operations, particularly with further optimization methods to suppress low-frequency noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在天然硅/硅锗量子点中实现自旋量子比特的高保真控制
硅电子自旋量子位是容错量子计算的理想平台。低频噪声,包括核自旋波动和电荷噪声,是限制门保真度的主要因素。抑制这种噪声对高保真量子比特操作至关重要。在此,我们报告了具有通用量子比特控制功能的天然硅双量子比特器件,旨在研究非纯化硅/硅锗量子点器件的栅极保真度上限。通过采用先进的器件结构、量子比特操纵技术和优化方法,我们实现了超过 99% 的单量子比特栅保真度和 91% 的双量子比特受控 Z (CZ) 栅保真度。解耦 CZ 栅极用于制备贝尔态,保真度达到 91%,通常超过了之前报道的天然硅器件的数值。这些结果突出表明,即使是天然硅也有潜力实现高保真门操作,特别是通过进一步优化方法来抑制低频噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light-induced Nonlinear Resonant Spin Magnetization Borophane as substrate for adsorption of He-4: A journey across dimensionality Memory resistor based in GaAs 2D-bilayers: In and out of equilibrium Three-dimensional valley-contrasting sound How does Goldene Stack?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1