Marc Prudhomme, Chaimaa Lakhdar, Jacques Fattaccioli, Mahmoud Addouche, Franck Chollet
{"title":"Functionalization of microbubbles in a microfluidic chip for biosensing application","authors":"Marc Prudhomme, Chaimaa Lakhdar, Jacques Fattaccioli, Mahmoud Addouche, Franck Chollet","doi":"10.1007/s10544-024-00721-2","DOIUrl":null,"url":null,"abstract":"<div><p>Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-024-00721-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.