{"title":"Effect of Tungsten on Microstructure and Mechanical Properties of Novel NiMnCrMoWx High-Entropy Alloys Developed by Mechanical Alloying","authors":"Naveen Kumar Mindi, Syed Nasimul Alam, Krishna Dutta","doi":"10.1007/s11665-024-10107-3","DOIUrl":null,"url":null,"abstract":"<p>NiMnCrMoW<sub><i>x</i></sub> (<i>x</i> = 0.2, 0.4, 0.6, 0.8, 1.0 atomic fraction) high-entropy alloys are synthesized by mechanical alloying and conventional sintering techniques. Both alloy powders and the sintered pellets are characterized for microstructural, chemical, and mechanical properties. The phase analysis by x-ray diffraction (XRD) and high-resolution transmission electron microscopy of 70 h milled powder confirmed the dual phase of BCC as a major phase and FCC as a minor phase. Scanning electron microscopy is used for microstructural study of the milled powders and sintered pellets. The differential scanning calorimetry analysis of milled powders confirmed that these are thermally stable below 1000 °C. The XRD of annealed powders didn’t show new phases below 1000 °C, whereas 1000 °C annealed powders showed the presence of <i>σ</i>-phase; the XRD of the sintered pellets confirmed different volume fractions of <i>σ</i>-phase, MoNi<sub>3</sub>, and MnNi phase. Results of Vickers hardness and wear studies indicated that the alloy containing 0.6 atomic fraction of tungsten possessed a maximum hardness of 644 HV<sub>5</sub> and maximum wear resistance. This might be attributed to the maximum extent of the <i>σ</i>-phase, MoNi<sub>3</sub>, and MnNi phases in the W<sub>0.6</sub> alloy.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"15 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10107-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
NiMnCrMoWx (x = 0.2, 0.4, 0.6, 0.8, 1.0 atomic fraction) high-entropy alloys are synthesized by mechanical alloying and conventional sintering techniques. Both alloy powders and the sintered pellets are characterized for microstructural, chemical, and mechanical properties. The phase analysis by x-ray diffraction (XRD) and high-resolution transmission electron microscopy of 70 h milled powder confirmed the dual phase of BCC as a major phase and FCC as a minor phase. Scanning electron microscopy is used for microstructural study of the milled powders and sintered pellets. The differential scanning calorimetry analysis of milled powders confirmed that these are thermally stable below 1000 °C. The XRD of annealed powders didn’t show new phases below 1000 °C, whereas 1000 °C annealed powders showed the presence of σ-phase; the XRD of the sintered pellets confirmed different volume fractions of σ-phase, MoNi3, and MnNi phase. Results of Vickers hardness and wear studies indicated that the alloy containing 0.6 atomic fraction of tungsten possessed a maximum hardness of 644 HV5 and maximum wear resistance. This might be attributed to the maximum extent of the σ-phase, MoNi3, and MnNi phases in the W0.6 alloy.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered