Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-19 DOI:10.1007/s11665-024-10118-0
Haipeng Yang, Yudong Sui, Yehua Jiang, Zhilong Tan, Xingyu Wang, Hao Zhou
{"title":"Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys","authors":"Haipeng Yang, Yudong Sui, Yehua Jiang, Zhilong Tan, Xingyu Wang, Hao Zhou","doi":"10.1007/s11665-024-10118-0","DOIUrl":null,"url":null,"abstract":"<p>Dual-phase heterostructured metals have excellent mechanical properties. This study systematically evaluated the impact of varying Ga concentrations on the microstructural evolution and mechanical response of dual-phase heterostructured Ag-49 wt.%Cu-<i>x</i>Ga (<i>x</i> = 0, 5, 7, and 10 wt.%) alloys. The study utilized scanning electron microscopy (SEM) and nanoindentation experiments to analyze the structure evolution and hardness changes in Ag-Cu-Ga alloys. The results revealed that the volume fraction of the hard domains (Cu-rich phases) and the hardness increased as the Ga content increased. This increase in Ga content led to a greater degree of mechanical incompatibility between the soft and hard domains, ultimately enhancing the mechanical properties of Ag-Cu-Ga alloys. Through the implementation of a loading–unloading–reloading (LUR) test, it was shown that the Ag-49Cu-7Ga specimens exhibited higher levels of hetero-deformation-induced (HDI) stresses compared to the Ag-49Cu specimens that did not contain Ga elements. This difference can be attributed to the solid solution strengthening effect of Ga. Through the use of digital imaging technique (DIC), it has been discovered that the introduction of Ga element into the Ag-Cu-Ga specimen results in the formation of dispersed strain bands on the surface. These strain bands effectively absorb and distribute the applied strains, resulting in the Ag-49Cu-7Ga specimen exhibiting both high strength and good plasticity.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"9 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10118-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-phase heterostructured metals have excellent mechanical properties. This study systematically evaluated the impact of varying Ga concentrations on the microstructural evolution and mechanical response of dual-phase heterostructured Ag-49 wt.%Cu-xGa (x = 0, 5, 7, and 10 wt.%) alloys. The study utilized scanning electron microscopy (SEM) and nanoindentation experiments to analyze the structure evolution and hardness changes in Ag-Cu-Ga alloys. The results revealed that the volume fraction of the hard domains (Cu-rich phases) and the hardness increased as the Ga content increased. This increase in Ga content led to a greater degree of mechanical incompatibility between the soft and hard domains, ultimately enhancing the mechanical properties of Ag-Cu-Ga alloys. Through the implementation of a loading–unloading–reloading (LUR) test, it was shown that the Ag-49Cu-7Ga specimens exhibited higher levels of hetero-deformation-induced (HDI) stresses compared to the Ag-49Cu specimens that did not contain Ga elements. This difference can be attributed to the solid solution strengthening effect of Ga. Through the use of digital imaging technique (DIC), it has been discovered that the introduction of Ga element into the Ag-Cu-Ga specimen results in the formation of dispersed strain bands on the surface. These strain bands effectively absorb and distribute the applied strains, resulting in the Ag-49Cu-7Ga specimen exhibiting both high strength and good plasticity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镓含量对异质结构双相银-49铜合金微结构演变和机械响应的影响
双相异质结构金属具有优异的机械性能。本研究系统地评估了不同镓浓度对双相异质结构 Ag-49 wt.%Cu-xGa(x = 0、5、7 和 10 wt.%)合金的微观结构演变和机械响应的影响。研究利用扫描电子显微镜(SEM)和纳米压痕实验分析了银-铜-镓合金的结构演变和硬度变化。结果表明,随着镓含量的增加,硬域(富铜相)的体积分数和硬度也随之增加。镓含量的增加导致软域和硬域之间的机械不相容性增加,最终提高了银铜镓合金的机械性能。通过实施加载-卸载-再加载(LUR)试验,结果表明与不含镓元素的 Ag-49Cu 试样相比,Ag-49Cu-7Ga 试样表现出更高水平的异质变形诱导应力(HDI)。通过使用数字成像技术(DIC),我们发现在 Ag-Cu-Ga 试样中引入 Ga 元素会在表面形成分散的应变带。这些应变带可有效吸收和分散所施加的应变,从而使 Ag-49Cu-7Ga 试样表现出高强度和良好的塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1