Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-19 DOI:10.1007/s11665-024-09961-y
Mandeep Kumar, Ratnesh Kumar Raj Singh, Vivek Jain
{"title":"Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique","authors":"Mandeep Kumar, Ratnesh Kumar Raj Singh, Vivek Jain","doi":"10.1007/s11665-024-09961-y","DOIUrl":null,"url":null,"abstract":"<p>This research seeks to create tube-based aluminum foam using friction stir tube deposition (FSTD) process. In this process, AA6063 consumable rods, pre-filled with a mixture of titanium hydride and aluminum powder, are deposited into a hollow mild steel tube using a conventional vertical milling machine. The results indicate that consumable rods with 12 pre-drilled holes ensure a more uniform distribution of the foaming agent. Furthermore, the study shows that increasing the tool’s rotational speed and the weight percentage of titanium hydride results in larger pore sizes and greater porosity. Specifically, for the same TiH<sub>2</sub> composition and rpm levels, the 12-hole filling strategy enhances porosity by 42.62 and 10.12% compared to the 8-hole and 10-hole methods. The optimal process parameters for developing aluminum foam are identified as using consumable rods with 12 holes containing 60% TiH<sub>2</sub> and a rotational speed of 1400 rpm.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"206 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-09961-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research seeks to create tube-based aluminum foam using friction stir tube deposition (FSTD) process. In this process, AA6063 consumable rods, pre-filled with a mixture of titanium hydride and aluminum powder, are deposited into a hollow mild steel tube using a conventional vertical milling machine. The results indicate that consumable rods with 12 pre-drilled holes ensure a more uniform distribution of the foaming agent. Furthermore, the study shows that increasing the tool’s rotational speed and the weight percentage of titanium hydride results in larger pore sizes and greater porosity. Specifically, for the same TiH2 composition and rpm levels, the 12-hole filling strategy enhances porosity by 42.62 and 10.12% compared to the 8-hole and 10-hole methods. The optimal process parameters for developing aluminum foam are identified as using consumable rods with 12 holes containing 60% TiH2 and a rotational speed of 1400 rpm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用搅拌摩擦管沉积技术制备的泡沫的机械和冶金性能
这项研究旨在利用搅拌摩擦管沉积(FSTD)工艺制造管基泡沫铝。在这一工艺中,使用传统的立式铣床将预先填充了氢化钛和铝粉混合物的 AA6063 耗材棒沉积到空心低碳钢管中。结果表明,带有 12 个预钻孔的耗材棒可确保发泡剂分布更均匀。此外,研究还表明,提高工具的旋转速度和氢化钛的重量百分比,可以获得更大的孔径和更高的孔隙率。具体而言,在相同的 TiH2 成分和转速水平下,12 孔填充策略比 8 孔和 10 孔方法的孔隙率分别提高了 42.62% 和 10.12%。开发铝泡沫的最佳工艺参数被确定为使用含 60% TiH2 的 12 孔消耗棒和 1400 转/分的转速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1