{"title":"The Effect of Cryogenic Treatment on Microstructure and Properties of WC–Co Cemented Carbides","authors":"Yuan Gao, Yongguo Wang, Zhi Chen","doi":"10.1007/s11665-024-10087-4","DOIUrl":null,"url":null,"abstract":"<p>ISO coded K06 cemented carbides are gradually becoming a commonly used tool materials for machining difficult-to-machine materials such as superalloy due to their excellent cutting performance. Researchers are exploring advanced manufacturing processes that can further enhance the performance of this material. Therefore, the cryogenic treatment of ISO coded K06 WC–Co cemented carbide was studied by uniform design experiment. The equation of the effect of cryogenic treatment on the properties of cemented carbide was fitted by multivariate quadratic nonlinear regression. The phase composition, grain size, and residual stress of the material were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that cryogenic treatment significantly changes the residual stress of WC grains, accompanied by a phase transition of the bonding phase (Co phase). However, cryogenic treatment has no significant effect on the grain size of the material. The wear resistance and impact toughness of cemented carbide have been significantly improved. At the same time, the wear scar and impact fracture of the material were observed, and the mechanism of impact fracture was analyzed. The residual compressive stress of the WC phase increased by about 120% and the rockwell hardness of the material increased by about 2.61% after cryogenic treatment, but the increase was insignificant. However, the wear resistance increased by about 88.89% and the impact toughness increased by about 19.30%.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10087-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ISO coded K06 cemented carbides are gradually becoming a commonly used tool materials for machining difficult-to-machine materials such as superalloy due to their excellent cutting performance. Researchers are exploring advanced manufacturing processes that can further enhance the performance of this material. Therefore, the cryogenic treatment of ISO coded K06 WC–Co cemented carbide was studied by uniform design experiment. The equation of the effect of cryogenic treatment on the properties of cemented carbide was fitted by multivariate quadratic nonlinear regression. The phase composition, grain size, and residual stress of the material were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that cryogenic treatment significantly changes the residual stress of WC grains, accompanied by a phase transition of the bonding phase (Co phase). However, cryogenic treatment has no significant effect on the grain size of the material. The wear resistance and impact toughness of cemented carbide have been significantly improved. At the same time, the wear scar and impact fracture of the material were observed, and the mechanism of impact fracture was analyzed. The residual compressive stress of the WC phase increased by about 120% and the rockwell hardness of the material increased by about 2.61% after cryogenic treatment, but the increase was insignificant. However, the wear resistance increased by about 88.89% and the impact toughness increased by about 19.30%.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered