Enhancement of High-Temperature Mechanical Properties in Al-Si-Cu-Ni-Mg Alloy by Micro-nano TiC Particle Complex Clusters

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-18 DOI:10.1007/s11665-024-10105-5
Sunhang Xiao, Zhengbing Xiao, Jinchuan Wen, Zhijie Dai, Dahong Zhao
{"title":"Enhancement of High-Temperature Mechanical Properties in Al-Si-Cu-Ni-Mg Alloy by Micro-nano TiC Particle Complex Clusters","authors":"Sunhang Xiao, Zhengbing Xiao, Jinchuan Wen, Zhijie Dai, Dahong Zhao","doi":"10.1007/s11665-024-10105-5","DOIUrl":null,"url":null,"abstract":"<p>This study aims to elucidate the influence of varying TiC particle additions on the mechanical properties of Al-10Si-3.5Cu-2.5Ni-0.3Mg alloys. The alloys were fabricated using the gravity casting technique, with TiC additions of 0, 0.5, 0.75, and 1%. Following T6 heat treatment, the microstructure, tensile strength, and fracture mechanisms of the alloys were comprehensively analyzed. The research findings indicate that the microstructure is primarily composed of α-Al, eutectic Si, Al<sub>3</sub>Ni, Al<sub>3</sub>CuNi, (Al, Si)<sub>2</sub>(Zr, Ti), and (Al, Si)<sub>3</sub>(Zr, Ti) phases. Image J quantitative analysis indicated that increasing TiC content resulted in the refinement of both the eutectic silicon and the grains. Additionally, the Al<sub>3</sub>Ni and Al<sub>3</sub>CuNi phases gradually became spheroidized and had a homogeneous distribution. The 350 °C tensile strength of the alloy increased from 93.7 to 137.8 Mpa with increasing TiC content, an increase of 44.1 MPa (47%). This is mainly attributed to the stability of the (Al, Si)<sub>2</sub>(Zr, Ti) phases at high temperatures and the refinement of the grains, eutectic silicon, and intermetallic second phases.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"64 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10105-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to elucidate the influence of varying TiC particle additions on the mechanical properties of Al-10Si-3.5Cu-2.5Ni-0.3Mg alloys. The alloys were fabricated using the gravity casting technique, with TiC additions of 0, 0.5, 0.75, and 1%. Following T6 heat treatment, the microstructure, tensile strength, and fracture mechanisms of the alloys were comprehensively analyzed. The research findings indicate that the microstructure is primarily composed of α-Al, eutectic Si, Al3Ni, Al3CuNi, (Al, Si)2(Zr, Ti), and (Al, Si)3(Zr, Ti) phases. Image J quantitative analysis indicated that increasing TiC content resulted in the refinement of both the eutectic silicon and the grains. Additionally, the Al3Ni and Al3CuNi phases gradually became spheroidized and had a homogeneous distribution. The 350 °C tensile strength of the alloy increased from 93.7 to 137.8 Mpa with increasing TiC content, an increase of 44.1 MPa (47%). This is mainly attributed to the stability of the (Al, Si)2(Zr, Ti) phases at high temperatures and the refinement of the grains, eutectic silicon, and intermetallic second phases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微纳米 TiC 粒子复合团簇增强铝硅铜镍镁合金的高温力学性能
本研究旨在阐明不同 TiC 颗粒添加量对 Al-10Si-3.5Cu-2.5Ni-0.3Mg 合金机械性能的影响。合金采用重力铸造技术制造,TiC 的添加量分别为 0、0.5、0.75 和 1%。经过 T6 热处理后,对合金的微观结构、抗拉强度和断裂机制进行了全面分析。研究结果表明,合金的微观结构主要由 α-Al、共晶 Si、Al3Ni、Al3CuNi、(Al, Si)2(Zr, Ti) 和 (Al, Si)3(Zr, Ti) 相组成。图像 J 定量分析表明,TiC 含量的增加会导致共晶硅和晶粒的细化。此外,Al3Ni 和 Al3CuNi 相逐渐球化,分布均匀。随着 TiC 含量的增加,合金的 350 °C 抗拉强度从 93.7 兆帕增加到 137.8 兆帕,增加了 44.1 兆帕(47%)。这主要归因于 (Al, Si)2(Zr, Ti) 相在高温下的稳定性以及晶粒、共晶硅和金属间第二相的细化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Effects of Retrogression and Re-aging (RRA) Processes on Corrosion Properties in AA 7020 Aluminium Alloy Synergistic Effect of Ex Situ and In Situ Reinforcements on the Dry Reciprocating Wear Behavior of AA6061-B4C Composite Fabricated Using Varying K2TiF6 Flux Content Effects of Ga Content on Microstructure Evolution and Mechanical Response of Heterostructured Dual-Phase Ag-49Cu Alloys Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel Mechanical and Metallurgical Properties of Foam Developed by Friction Stir Tube Deposition Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1