Wenhua Xue, Jie Chen, Honghao Yao, Jun Mao, Chen Chen, Yumei Wang, Qian Zhang
{"title":"Ultralow Lattice Thermal Conductivity of Zintl-Phase CaAgSb Induced by Interface and Superlattice Scattering","authors":"Wenhua Xue, Jie Chen, Honghao Yao, Jun Mao, Chen Chen, Yumei Wang, Qian Zhang","doi":"10.1002/smsc.202400147","DOIUrl":null,"url":null,"abstract":"Zintl phases attract extensive attention due to the characteristic of “electron-crystal, phonon glass”. In this work, an ultralow lattice thermal conductivity ≈0.59 W m<sup>−1</sup> K<sup>−1</sup> at 300 K and ≈0.3 W m<sup>−1</sup> K<sup>−1</sup> at 623 K is obtained in CaAgSb Zintl phase, which is much lower than that of other well-known Zintl compounds. The origin of this ultralow lattice thermal conductivity is explored through first-principles calculations and <i>C</i><sub><i>s</i></sub>-corrected scanning transmission electron microscopy. Theoretical phonon calculations provide evidence for complex phonon characteristics such as avoided-crossing effect and low-frequency flat band that favor the low lattice thermal conductivity. Moreover, subsequent microstructure results reveal abundant structural defects created in the CaAgSb sample, including superlattice structure and interface structure, which further contribute to the ultralow lattice thermal conductivity.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"9 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zintl phases attract extensive attention due to the characteristic of “electron-crystal, phonon glass”. In this work, an ultralow lattice thermal conductivity ≈0.59 W m−1 K−1 at 300 K and ≈0.3 W m−1 K−1 at 623 K is obtained in CaAgSb Zintl phase, which is much lower than that of other well-known Zintl compounds. The origin of this ultralow lattice thermal conductivity is explored through first-principles calculations and Cs-corrected scanning transmission electron microscopy. Theoretical phonon calculations provide evidence for complex phonon characteristics such as avoided-crossing effect and low-frequency flat band that favor the low lattice thermal conductivity. Moreover, subsequent microstructure results reveal abundant structural defects created in the CaAgSb sample, including superlattice structure and interface structure, which further contribute to the ultralow lattice thermal conductivity.
Zintl 相因其 "电子晶体、声子玻璃 "的特性而受到广泛关注。在这项研究中,CaAgSb Zintl 相在 300 K 时的超低晶格热导率≈0.59 W m-1 K-1,在 623 K 时的超低晶格热导率≈0.3 W m-1 K-1,远低于其他著名的 Zintl 化合物。我们通过第一原理计算和铯校正扫描透射电子显微镜探究了这种超低晶格热导率的来源。理论声子计算证明了声子的复杂特性,如避免交叉效应和低频平带,这有利于实现低晶格热导率。此外,随后的微观结构结果表明,钙银锑样品中存在大量结构缺陷,包括超晶格结构和界面结构,这进一步促进了超低晶格热导率的产生。
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.