{"title":"Energy absorption properties of origami-based re-entrant honeycomb sandwich structures with CFRP subjected to low-velocity impact","authors":"Zhen Cui, Yuechen Duan, Jiaqi Qi, Feng Zhang, Bowen Li, Mingyu Liu, Peng Jin","doi":"10.1002/pc.29078","DOIUrl":null,"url":null,"abstract":"This paper investigates a honeycomb sandwich structure that draws inspiration from the craft of origami. A specific folding pattern was applied to the honeycomb to create the origami-based re-entrant honeycomb (ORH), aimed at improving the energy absorption properties of the sandwich structure. The study on the energy absorption properties of structures under low-velocity impact (LVI) utilized both experimental and numerical approaches. The energy absorption properties of the sandwich structure were examined by conducting LVI tests with different impact energy and then compared to the mechanical properties of the traditional re-entrant honeycomb sandwich structures (TRHSS). Additionally, a refined finite element model has been established and its accuracy verified. Numerical studies were conducted to explore the effects of structural parameters on the energy absorption properties of ORH sandwich structure (ORHSS). The results show that the ORHSS exhibited a significant reduction in peak force when subjected to LVI, in contrast to the TRHSS. Furthermore, the ORHSS exhibit significant efficiency in energy absorption. Enhancing the wall thickness <span data-altimg=\"/cms/asset/72b94ed9-b96f-4ccc-a607-de8852e83e3c/pc29078-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/pc29078-math-0001.png\"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:02728397:media:pc29078:pc29078-math-0001\" display=\"inline\" location=\"graphic/pc29078-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"t\" data-semantic-type=\"identifier\">t</mi></mrow>$$ t $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> or folding angle <span data-altimg=\"/cms/asset/b167129f-2d5c-4077-9419-bebf8f11e2fb/pc29078-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/pc29078-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"division\" data-semantic-speech=\"upper V divided by upper H\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:02728397:media:pc29078:pc29078-math-0002\" display=\"inline\" location=\"graphic/pc29078-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"division\" data-semantic-speech=\"upper V divided by upper H\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">V</mi><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"3\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi></mrow>$$ V/H $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> can significantly improve the energy absorption properties of the ORHSS, thereby boosting the honeycomb's contribution to this process. This optimization results in an improved absorptive effect of the structure. The findings offer new recommendations for developing lightweight absorbent materials with potential applications across various industries.","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":"3 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29078","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates a honeycomb sandwich structure that draws inspiration from the craft of origami. A specific folding pattern was applied to the honeycomb to create the origami-based re-entrant honeycomb (ORH), aimed at improving the energy absorption properties of the sandwich structure. The study on the energy absorption properties of structures under low-velocity impact (LVI) utilized both experimental and numerical approaches. The energy absorption properties of the sandwich structure were examined by conducting LVI tests with different impact energy and then compared to the mechanical properties of the traditional re-entrant honeycomb sandwich structures (TRHSS). Additionally, a refined finite element model has been established and its accuracy verified. Numerical studies were conducted to explore the effects of structural parameters on the energy absorption properties of ORH sandwich structure (ORHSS). The results show that the ORHSS exhibited a significant reduction in peak force when subjected to LVI, in contrast to the TRHSS. Furthermore, the ORHSS exhibit significant efficiency in energy absorption. Enhancing the wall thickness or folding angle can significantly improve the energy absorption properties of the ORHSS, thereby boosting the honeycomb's contribution to this process. This optimization results in an improved absorptive effect of the structure. The findings offer new recommendations for developing lightweight absorbent materials with potential applications across various industries.
期刊介绍:
Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.