{"title":"The mechanism of citric acid and oxalic acid on dissolution of high-silicon iron tailings","authors":"Chaofan Li, Xiaoyu Zhang, Yan Yin, Fengming Xi, Shumei Wang, Qinqin Hu, Jiaoyue Wang, Longfei Bing","doi":"10.1016/j.jiec.2024.08.034","DOIUrl":null,"url":null,"abstract":"In the indoor static environment, citric acid and oxalic acid, two kinds of low molecular weight organic acids were used to dissolve silicon and iron, which were two valuable elements in iron tailings. The results showed that the iron tailings used in this study were high silicon type iron tailings with 76.1 % silicon content and 11.31 % iron content. Both acids were soluble to ferrosilicon, but their solubility to iron was higher. Compared with the two, oxalic acid had stronger silicon solubility, reaching 35.98 μg/mL after 24d. The solubility of citric acid to iron was stronger, reaching 483.51 μg/mL after 24d. The dissolution of silicon and total iron in iron tailings by oxalic acid, citric acid and mixed acid conforms to first-order kinetics and belongs to surface dissolution reaction. After the dissolution of oxalic acid, silicon and iron ions might exist in the form of metasilic acid, iron oxalate and trioxalate potassium ferrite. Oxalic acid reacted with Fe to precipitate, which might be the reason for the higher Fe in the solution. The silicon and iron ions after citric acid dissolution might exist in the form of ferric citrate, ferric citrate complex, ferrous hexafluorosilicate, and more Fe products might be the reason for the higher Fe in the solution.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"21 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the indoor static environment, citric acid and oxalic acid, two kinds of low molecular weight organic acids were used to dissolve silicon and iron, which were two valuable elements in iron tailings. The results showed that the iron tailings used in this study were high silicon type iron tailings with 76.1 % silicon content and 11.31 % iron content. Both acids were soluble to ferrosilicon, but their solubility to iron was higher. Compared with the two, oxalic acid had stronger silicon solubility, reaching 35.98 μg/mL after 24d. The solubility of citric acid to iron was stronger, reaching 483.51 μg/mL after 24d. The dissolution of silicon and total iron in iron tailings by oxalic acid, citric acid and mixed acid conforms to first-order kinetics and belongs to surface dissolution reaction. After the dissolution of oxalic acid, silicon and iron ions might exist in the form of metasilic acid, iron oxalate and trioxalate potassium ferrite. Oxalic acid reacted with Fe to precipitate, which might be the reason for the higher Fe in the solution. The silicon and iron ions after citric acid dissolution might exist in the form of ferric citrate, ferric citrate complex, ferrous hexafluorosilicate, and more Fe products might be the reason for the higher Fe in the solution.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.