Realistic Extreme Behavior Generation for Improved AV Testing

Robert Dyro, Matthew Foutter, Ruolin Li, Luigi Di Lillo, Edward Schmerling, Xilin Zhou, Marco Pavone
{"title":"Realistic Extreme Behavior Generation for Improved AV Testing","authors":"Robert Dyro, Matthew Foutter, Ruolin Li, Luigi Di Lillo, Edward Schmerling, Xilin Zhou, Marco Pavone","doi":"arxiv-2409.10669","DOIUrl":null,"url":null,"abstract":"This work introduces a framework to diagnose the strengths and shortcomings\nof Autonomous Vehicle (AV) collision avoidance technology with synthetic yet\nrealistic potential collision scenarios adapted from real-world, collision-free\ndata. Our framework generates counterfactual collisions with diverse crash\nproperties, e.g., crash angle and velocity, between an adversary and a target\nvehicle by adding perturbations to the adversary's predicted trajectory from a\nlearned AV behavior model. Our main contribution is to ground these adversarial\nperturbations in realistic behavior as defined through the lens of\ndata-alignment in the behavior model's parameter space. Then, we cluster these\nsynthetic counterfactuals to identify plausible and representative collision\nscenarios to form the basis of a test suite for downstream AV system\nevaluation. We demonstrate our framework using two state-of-the-art behavior\nprediction models as sources of realistic adversarial perturbations, and show\nthat our scenario clustering evokes interpretable failure modes from a baseline\nAV policy under evaluation.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"54 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a framework to diagnose the strengths and shortcomings of Autonomous Vehicle (AV) collision avoidance technology with synthetic yet realistic potential collision scenarios adapted from real-world, collision-free data. Our framework generates counterfactual collisions with diverse crash properties, e.g., crash angle and velocity, between an adversary and a target vehicle by adding perturbations to the adversary's predicted trajectory from a learned AV behavior model. Our main contribution is to ground these adversarial perturbations in realistic behavior as defined through the lens of data-alignment in the behavior model's parameter space. Then, we cluster these synthetic counterfactuals to identify plausible and representative collision scenarios to form the basis of a test suite for downstream AV system evaluation. We demonstrate our framework using two state-of-the-art behavior prediction models as sources of realistic adversarial perturbations, and show that our scenario clustering evokes interpretable failure modes from a baseline AV policy under evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成逼真的极端行为,改进视听测试
这项工作引入了一个框架,利用从真实世界的无碰撞数据中改编的合成但真实的潜在碰撞场景,诊断自动驾驶汽车(AV)防撞技术的优势和不足。我们的框架通过在对手根据学习到的 AV 行为模型预测的轨迹上添加扰动,在对手和目标车辆之间生成具有不同碰撞属性(如碰撞角度和速度)的反事实碰撞。我们的主要贡献是将这些对抗扰动建立在现实行为的基础上,而现实行为是通过行为模型参数空间中的数据对齐透镜来定义的。然后,我们对这些合成的反事实进行聚类,以确定可信的、有代表性的碰撞场景,从而为下游视听系统评估奠定测试套件的基础。我们使用两个最先进的行为预测模型作为现实对抗扰动的来源,演示了我们的框架,并表明我们的情景聚类可以从正在评估的基线AV策略中唤起可解释的故障模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1