Robert Dyro, Matthew Foutter, Ruolin Li, Luigi Di Lillo, Edward Schmerling, Xilin Zhou, Marco Pavone
{"title":"Realistic Extreme Behavior Generation for Improved AV Testing","authors":"Robert Dyro, Matthew Foutter, Ruolin Li, Luigi Di Lillo, Edward Schmerling, Xilin Zhou, Marco Pavone","doi":"arxiv-2409.10669","DOIUrl":null,"url":null,"abstract":"This work introduces a framework to diagnose the strengths and shortcomings\nof Autonomous Vehicle (AV) collision avoidance technology with synthetic yet\nrealistic potential collision scenarios adapted from real-world, collision-free\ndata. Our framework generates counterfactual collisions with diverse crash\nproperties, e.g., crash angle and velocity, between an adversary and a target\nvehicle by adding perturbations to the adversary's predicted trajectory from a\nlearned AV behavior model. Our main contribution is to ground these adversarial\nperturbations in realistic behavior as defined through the lens of\ndata-alignment in the behavior model's parameter space. Then, we cluster these\nsynthetic counterfactuals to identify plausible and representative collision\nscenarios to form the basis of a test suite for downstream AV system\nevaluation. We demonstrate our framework using two state-of-the-art behavior\nprediction models as sources of realistic adversarial perturbations, and show\nthat our scenario clustering evokes interpretable failure modes from a baseline\nAV policy under evaluation.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"54 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a framework to diagnose the strengths and shortcomings
of Autonomous Vehicle (AV) collision avoidance technology with synthetic yet
realistic potential collision scenarios adapted from real-world, collision-free
data. Our framework generates counterfactual collisions with diverse crash
properties, e.g., crash angle and velocity, between an adversary and a target
vehicle by adding perturbations to the adversary's predicted trajectory from a
learned AV behavior model. Our main contribution is to ground these adversarial
perturbations in realistic behavior as defined through the lens of
data-alignment in the behavior model's parameter space. Then, we cluster these
synthetic counterfactuals to identify plausible and representative collision
scenarios to form the basis of a test suite for downstream AV system
evaluation. We demonstrate our framework using two state-of-the-art behavior
prediction models as sources of realistic adversarial perturbations, and show
that our scenario clustering evokes interpretable failure modes from a baseline
AV policy under evaluation.
这项工作引入了一个框架,利用从真实世界的无碰撞数据中改编的合成但真实的潜在碰撞场景,诊断自动驾驶汽车(AV)防撞技术的优势和不足。我们的框架通过在对手根据学习到的 AV 行为模型预测的轨迹上添加扰动,在对手和目标车辆之间生成具有不同碰撞属性(如碰撞角度和速度)的反事实碰撞。我们的主要贡献是将这些对抗扰动建立在现实行为的基础上,而现实行为是通过行为模型参数空间中的数据对齐透镜来定义的。然后,我们对这些合成的反事实进行聚类,以确定可信的、有代表性的碰撞场景,从而为下游视听系统评估奠定测试套件的基础。我们使用两个最先进的行为预测模型作为现实对抗扰动的来源,演示了我们的框架,并表明我们的情景聚类可以从正在评估的基线AV策略中唤起可解释的故障模式。