A first-order greedy algorithm for A-optimal experimental design with optimality guarantee

Christian Aarset
{"title":"A first-order greedy algorithm for A-optimal experimental design with optimality guarantee","authors":"Christian Aarset","doi":"arxiv-2409.09963","DOIUrl":null,"url":null,"abstract":"Optimal experimental design (OED) concerns itself with identifying ideal\nmethods of data collection, e.g.~via sensor placement. The \\emph{greedy\nalgorithm}, that is, placing one sensor at a time, in an iteratively optimal\nmanner, stands as an extremely robust and easily executed algorithm for this\npurpose. However, it is a priori unclear whether this algorithm leads to\nsub-optimal regimes. Taking advantage of the author's recent work on non-smooth\nconvex optimality criteria for OED, we here present a framework for verifying\nglobal optimality for the greedy algorithm, as well as employing gradient-based\nspeed-ups.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal experimental design (OED) concerns itself with identifying ideal methods of data collection, e.g.~via sensor placement. The \emph{greedy algorithm}, that is, placing one sensor at a time, in an iteratively optimal manner, stands as an extremely robust and easily executed algorithm for this purpose. However, it is a priori unclear whether this algorithm leads to sub-optimal regimes. Taking advantage of the author's recent work on non-smooth convex optimality criteria for OED, we here present a framework for verifying global optimality for the greedy algorithm, as well as employing gradient-based speed-ups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有最优性保证的 A 优化实验设计一阶贪婪算法
优化实验设计(OED)关注的是确定理想的数据收集方法,例如通过传感器的放置。emph{greedyalgorithm},即以迭代优化的方式一次放置一个传感器,是一种极其稳健且易于执行的算法。然而,这种算法是否会导致次优状态,目前尚不清楚。利用作者最近在 OED 非光滑凸优化标准方面的研究成果,我们在此提出一个框架,用于验证贪婪算法的全局最优性,并采用基于梯度的加速方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1