A kernel-based PEM estimator for forward model

Giulio Fattore, Marco Peruzzo, Giacomo Sartori, Mattia Zorzi
{"title":"A kernel-based PEM estimator for forward model","authors":"Giulio Fattore, Marco Peruzzo, Giacomo Sartori, Mattia Zorzi","doi":"arxiv-2409.09679","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of learning the impulse responses\ncharacterizing forward models by means of a regularized kernel-based Prediction\nError Method (PEM). The common approach to accomplish that is to approximate\nthe system with a high-order stable ARX model. However, such choice induces a\ncertain undesired prior information in the system that we want to estimate. To\novercome this issue, we propose a new kernel-based paradigm which is formulated\ndirectly in terms of the impulse responses of the forward model and leading to\nthe identification of a high-order MAX model. The most challenging step is the\nestimation of the kernel hyperparameters optimizing the marginal likelihood.\nThe latter, indeed, does not admit a closed form expression. We propose a\nmethod for evaluating the marginal likelihood which makes possible the\nhyperparameters estimation. Finally, some numerical results showing the\neffectiveness of the method are presented.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of learning the impulse responses characterizing forward models by means of a regularized kernel-based Prediction Error Method (PEM). The common approach to accomplish that is to approximate the system with a high-order stable ARX model. However, such choice induces a certain undesired prior information in the system that we want to estimate. To overcome this issue, we propose a new kernel-based paradigm which is formulated directly in terms of the impulse responses of the forward model and leading to the identification of a high-order MAX model. The most challenging step is the estimation of the kernel hyperparameters optimizing the marginal likelihood. The latter, indeed, does not admit a closed form expression. We propose a method for evaluating the marginal likelihood which makes possible the hyperparameters estimation. Finally, some numerical results showing the effectiveness of the method are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核的前向模型 PEM 估计器
本文通过基于正则化核的预测误差法(PEM)来解决学习前向模型脉冲响应特征的问题。常用的方法是用高阶稳定 ARX 模型来逼近系统。然而,这种选择会在我们想要估计的系统中引起某些不想要的先验信息。为了克服这个问题,我们提出了一种基于核的新范式,它直接根据前向模型的脉冲响应进行表述,从而识别出高阶 MAX 模型。最具挑战性的步骤是优化边际似然的核超参数估计。我们提出了一种评估边际似然的方法,这使得超参数估计成为可能。最后,一些数值结果显示了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1