Data-Driven Output Regulation via Internal Model Principle

Liquan Lin, Jie Huang
{"title":"Data-Driven Output Regulation via Internal Model Principle","authors":"Liquan Lin, Jie Huang","doi":"arxiv-2409.09571","DOIUrl":null,"url":null,"abstract":"The data-driven techniques have been developed to deal with the output\nregulation problem of unknown linear systems by various approaches. In this\npaper, we first extend an existing algorithm from single-input single-output\nlinear systems to multi-input multi-output linear systems. Then, by separating\nthe dynamics used in the learning phase and the control phase, we further\npropose an improved algorithm that significantly reduces the computational cost\nand weakens the solvability conditions over the first algorithm.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The data-driven techniques have been developed to deal with the output regulation problem of unknown linear systems by various approaches. In this paper, we first extend an existing algorithm from single-input single-output linear systems to multi-input multi-output linear systems. Then, by separating the dynamics used in the learning phase and the control phase, we further propose an improved algorithm that significantly reduces the computational cost and weakens the solvability conditions over the first algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过内部模型原则进行数据驱动的产出监管
为解决未知线性系统的输出调节问题,人们开发了多种数据驱动技术。在本文中,我们首先将现有算法从单输入单输出线性系统扩展到多输入多输出线性系统。然后,通过分离学习阶段和控制阶段所使用的动力学,我们进一步提出了一种改进算法,与第一种算法相比,该算法大大降低了计算成本,并弱化了可解性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1