Constraints-Informed Neural-Laguerre Approximation of Nonlinear MPC with Application in Power Electronics

Duo Xu, Rody Aerts, Petros Karamanakos, Mircea Lazar
{"title":"Constraints-Informed Neural-Laguerre Approximation of Nonlinear MPC with Application in Power Electronics","authors":"Duo Xu, Rody Aerts, Petros Karamanakos, Mircea Lazar","doi":"arxiv-2409.09436","DOIUrl":null,"url":null,"abstract":"This paper considers learning online (implicit) nonlinear model predictive\ncontrol (MPC) laws using neural networks and Laguerre functions. Firstly, we\nparameterize the control sequence of nonlinear MPC using Laguerre functions,\nwhich typically yields a smoother control law compared to the original\nnonlinear MPC law. Secondly, we employ neural networks to learn the\ncoefficients of the Laguerre nonlinear MPC solution, which comes with several\nbenefits, namely the dimension of the learning space is dictated by the number\nof Laguerre functions and the complete predicted input sequence can be used to\nlearn the coefficients. To mitigate constraints violation for neural\napproximations of nonlinear MPC, we develop a constraints-informed loss\nfunction that penalizes the violation of polytopic state constraints during\nlearning. Box input constraints are handled by using a clamp function in the\noutput layer of the neural network. We demonstrate the effectiveness of the\ndeveloped framework on a nonlinear buck-boost converter model with sampling\nrates in the sub-millisecond range, where online nonlinear MPC would not be\nable to run in real time. The developed constraints-informed neural-Laguerre\napproximation yields similar performance with long-horizon online nonlinear\nMPC, but with execution times of a few microseconds, as validated on a\nfield-programmable gate array (FPGA) platform.","PeriodicalId":501286,"journal":{"name":"arXiv - MATH - Optimization and Control","volume":"182 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Optimization and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers learning online (implicit) nonlinear model predictive control (MPC) laws using neural networks and Laguerre functions. Firstly, we parameterize the control sequence of nonlinear MPC using Laguerre functions, which typically yields a smoother control law compared to the original nonlinear MPC law. Secondly, we employ neural networks to learn the coefficients of the Laguerre nonlinear MPC solution, which comes with several benefits, namely the dimension of the learning space is dictated by the number of Laguerre functions and the complete predicted input sequence can be used to learn the coefficients. To mitigate constraints violation for neural approximations of nonlinear MPC, we develop a constraints-informed loss function that penalizes the violation of polytopic state constraints during learning. Box input constraints are handled by using a clamp function in the output layer of the neural network. We demonstrate the effectiveness of the developed framework on a nonlinear buck-boost converter model with sampling rates in the sub-millisecond range, where online nonlinear MPC would not be able to run in real time. The developed constraints-informed neural-Laguerre approximation yields similar performance with long-horizon online nonlinear MPC, but with execution times of a few microseconds, as validated on a field-programmable gate array (FPGA) platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性 MPC 的约束条件神经-拉盖尔逼近法在电力电子技术中的应用
本文考虑利用神经网络和拉盖尔函数学习在线(隐式)非线性模型预测控制(MPC)法则。首先,我们使用拉盖尔函数对非线性 MPC 的控制序列进行参数化,与原始的非线性 MPC 规律相比,这种方法通常能得到更平滑的控制规律。其次,我们利用神经网络来学习拉盖尔非线性 MPC 解决方案的系数,这样做有几个好处,即学习空间的维度由拉盖尔函数的数量决定,而且可以使用完整的预测输入序列来学习系数。为了减轻非线性 MPC 神经逼近的约束违反情况,我们开发了一种约束信息损失函数,对学习过程中违反多点状态约束的情况进行惩罚。在神经网络的输出层中使用钳位函数来处理盒式输入约束。我们在一个非线性降压-升压转换器模型上演示了所开发框架的有效性,该模型的采样率在亚毫秒范围内,在线非线性 MPC 无法实时运行。经现场可编程门阵列 (FPGA) 平台验证,所开发的约束信息神经-拉盖尔逼近方法与长视距在线非线性 MPC 性能相似,但执行时间仅为几微秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading with propagators and constraints: applications to optimal execution and battery storage Upgrading edges in the maximal covering location problem Minmax regret maximal covering location problems with edge demands Parametric Shape Optimization of Flagellated Micro-Swimmers Using Bayesian Techniques Rapid and finite-time boundary stabilization of a KdV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1