{"title":"Angle-Agnostic Radio Frequency Sensing Integrated Into 5G-NR","authors":"Dariush Salami;Ramin Hasibi;Stefano Savazzi;Tom Michoel;Stephan Sigg","doi":"10.1109/JSEN.2024.3459428","DOIUrl":null,"url":null,"abstract":"The fusion of radio frequency (RF) sensing with cellular communication networks presents a revolutionary paradigm, enabling networks to seamlessly integrate communication and perception capabilities. Leveraging electromagnetic radiation, this technology facilitates the detection and interpretation of human movements, activities, and environmental changes. This article proposes a novel implementation of RF sensing within the allocated resources for new radio (NR) sidelink direct device-to-device (D2D) communication, showcasing the synergy between RF sensing and machine-learning (ML) techniques. The article addresses the inherent challenge of angle dependency in the sidelink-enabled sensing scheme, and introduces innovative solutions to achieve angle-agnostic environmental perception. The proposed approach incorporates a graph-based encoding of movement and gesture sequences, capturing spatio-temporal relations, and integrates orientation tracking to enhance human gesture recognition. The proposed model surpasses state-of-the-art algorithms, demonstrating a remarkable 100% accuracy in RF sensing when all the angles are available. Although the performance of our proposed method does decline with fewer available angles, it demonstrates exceptional resilience to missing data. Specifically, our model significantly outperforms existing models by approximately 70% in scenarios where seven out of eight angles are unavailable. To further advance sensing capabilities in RF sensing systems, a comprehensive dataset comprising 15 subjects performing 21 gestures, recorded from eight different angles, is openly shared. This contribution aims to enhance the performance and reliability of RF sensing systems by providing a robust and efficient ML-driven solution for human gesture recognition within NR sidelink D2D communication networks, aligning with the latest advancements in ML for RF sensing applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10684085/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The fusion of radio frequency (RF) sensing with cellular communication networks presents a revolutionary paradigm, enabling networks to seamlessly integrate communication and perception capabilities. Leveraging electromagnetic radiation, this technology facilitates the detection and interpretation of human movements, activities, and environmental changes. This article proposes a novel implementation of RF sensing within the allocated resources for new radio (NR) sidelink direct device-to-device (D2D) communication, showcasing the synergy between RF sensing and machine-learning (ML) techniques. The article addresses the inherent challenge of angle dependency in the sidelink-enabled sensing scheme, and introduces innovative solutions to achieve angle-agnostic environmental perception. The proposed approach incorporates a graph-based encoding of movement and gesture sequences, capturing spatio-temporal relations, and integrates orientation tracking to enhance human gesture recognition. The proposed model surpasses state-of-the-art algorithms, demonstrating a remarkable 100% accuracy in RF sensing when all the angles are available. Although the performance of our proposed method does decline with fewer available angles, it demonstrates exceptional resilience to missing data. Specifically, our model significantly outperforms existing models by approximately 70% in scenarios where seven out of eight angles are unavailable. To further advance sensing capabilities in RF sensing systems, a comprehensive dataset comprising 15 subjects performing 21 gestures, recorded from eight different angles, is openly shared. This contribution aims to enhance the performance and reliability of RF sensing systems by providing a robust and efficient ML-driven solution for human gesture recognition within NR sidelink D2D communication networks, aligning with the latest advancements in ML for RF sensing applications.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice