Angle-Agnostic Radio Frequency Sensing Integrated Into 5G-NR

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-09-18 DOI:10.1109/JSEN.2024.3459428
Dariush Salami;Ramin Hasibi;Stefano Savazzi;Tom Michoel;Stephan Sigg
{"title":"Angle-Agnostic Radio Frequency Sensing Integrated Into 5G-NR","authors":"Dariush Salami;Ramin Hasibi;Stefano Savazzi;Tom Michoel;Stephan Sigg","doi":"10.1109/JSEN.2024.3459428","DOIUrl":null,"url":null,"abstract":"The fusion of radio frequency (RF) sensing with cellular communication networks presents a revolutionary paradigm, enabling networks to seamlessly integrate communication and perception capabilities. Leveraging electromagnetic radiation, this technology facilitates the detection and interpretation of human movements, activities, and environmental changes. This article proposes a novel implementation of RF sensing within the allocated resources for new radio (NR) sidelink direct device-to-device (D2D) communication, showcasing the synergy between RF sensing and machine-learning (ML) techniques. The article addresses the inherent challenge of angle dependency in the sidelink-enabled sensing scheme, and introduces innovative solutions to achieve angle-agnostic environmental perception. The proposed approach incorporates a graph-based encoding of movement and gesture sequences, capturing spatio-temporal relations, and integrates orientation tracking to enhance human gesture recognition. The proposed model surpasses state-of-the-art algorithms, demonstrating a remarkable 100% accuracy in RF sensing when all the angles are available. Although the performance of our proposed method does decline with fewer available angles, it demonstrates exceptional resilience to missing data. Specifically, our model significantly outperforms existing models by approximately 70% in scenarios where seven out of eight angles are unavailable. To further advance sensing capabilities in RF sensing systems, a comprehensive dataset comprising 15 subjects performing 21 gestures, recorded from eight different angles, is openly shared. This contribution aims to enhance the performance and reliability of RF sensing systems by providing a robust and efficient ML-driven solution for human gesture recognition within NR sidelink D2D communication networks, aligning with the latest advancements in ML for RF sensing applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10684085/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fusion of radio frequency (RF) sensing with cellular communication networks presents a revolutionary paradigm, enabling networks to seamlessly integrate communication and perception capabilities. Leveraging electromagnetic radiation, this technology facilitates the detection and interpretation of human movements, activities, and environmental changes. This article proposes a novel implementation of RF sensing within the allocated resources for new radio (NR) sidelink direct device-to-device (D2D) communication, showcasing the synergy between RF sensing and machine-learning (ML) techniques. The article addresses the inherent challenge of angle dependency in the sidelink-enabled sensing scheme, and introduces innovative solutions to achieve angle-agnostic environmental perception. The proposed approach incorporates a graph-based encoding of movement and gesture sequences, capturing spatio-temporal relations, and integrates orientation tracking to enhance human gesture recognition. The proposed model surpasses state-of-the-art algorithms, demonstrating a remarkable 100% accuracy in RF sensing when all the angles are available. Although the performance of our proposed method does decline with fewer available angles, it demonstrates exceptional resilience to missing data. Specifically, our model significantly outperforms existing models by approximately 70% in scenarios where seven out of eight angles are unavailable. To further advance sensing capabilities in RF sensing systems, a comprehensive dataset comprising 15 subjects performing 21 gestures, recorded from eight different angles, is openly shared. This contribution aims to enhance the performance and reliability of RF sensing systems by providing a robust and efficient ML-driven solution for human gesture recognition within NR sidelink D2D communication networks, aligning with the latest advancements in ML for RF sensing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将角度诊断射频传感技术集成到 5G-NR 中
射频(RF)传感与蜂窝通信网络的融合提供了一种革命性的模式,使网络能够无缝集成通信和感知能力。利用电磁辐射,这项技术有助于检测和解读人类的动作、活动和环境变化。本文提出了在新无线电(NR)侧链路直接设备到设备(D2D)通信的分配资源内实现射频传感的新方法,展示了射频传感与机器学习(ML)技术之间的协同作用。文章针对侧向链路感知方案中固有的角度依赖性挑战,提出了创新解决方案,以实现与角度无关的环境感知。所提出的方法结合了基于图形的运动和手势序列编码,捕捉了时空关系,并集成了方向跟踪功能,以提高人类手势识别能力。所提出的模型超越了最先进的算法,在所有角度都可用的情况下,射频感应的准确率高达 100%。虽然我们提出的方法的性能会随着可用角度的减少而下降,但它对缺失数据表现出了卓越的适应能力。具体来说,在八个角度中有七个角度不可用的情况下,我们的模型比现有模型高出约 70%。为了进一步提高射频传感系统的传感能力,我们公开分享了一个综合数据集,该数据集由 15 名受试者从 8 个不同角度记录的 21 种手势组成。这一贡献旨在通过为 NR 侧向链路 D2D 通信网络中的人类手势识别提供稳健高效的 ML 驱动型解决方案,提高射频传感系统的性能和可靠性,与射频传感应用中 ML 的最新进展保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1